IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1533-d1616153.html
   My bibliography  Save this article

Three-Dimensionally Printed Metal-Coated Flow-Field Plate for Lightweight Polymer Electrolyte Membrane Fuel Cells

Author

Listed:
  • Dasol Kim

    (School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
    These authors contributed equally to this work.)

  • Geonhwi Kim

    (School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
    These authors contributed equally to this work.)

  • Juho Na

    (School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea)

  • Hyeok Kim

    (School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea)

  • Jaeyeon Kim

    (School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea)

  • Guyoung Cho

    (Department Mechanical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyenggi-do, Republic of Korea)

  • Taehyun Park

    (School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea)

Abstract

This study investigates the potential for affordable and lightweight polymer electrolyte membrane fuel cells (PEMFCs) using lightweight flow-field plates, also referred to as bipolar plates. A comparative analysis was conducted on the performance of metal-coated and uncoated three-dimensional (3D)-printed flow-field plates, as well as that of a conventional graphite flow-field plate. The fabrication of these lightweight flow-field plates involved the application of sputtering and 3D printing technologies. The polarization curves and corresponding electrochemical impedance spectra of PEMFCs with metal-coated 3D-printed, uncoated 3D-printed, and graphite flow-field plates were measured. The results demonstrate that the metal-coated 3D-printed flow-field plate exhibits a gravimetric power density of 5.21 mW/g, while the graphite flow-field plate registers a value of 2.78 mW/g, representing an 87.4% improvement in gravimetric power density for the metal-coated 3D-printed flow-field plate compared to the graphite flow-field plate. These findings suggest the feasibility of reducing the weight of PEMFCs using metal-coated 3D-printed flow-field plates.

Suggested Citation

  • Dasol Kim & Geonhwi Kim & Juho Na & Hyeok Kim & Jaeyeon Kim & Guyoung Cho & Taehyun Park, 2025. "Three-Dimensionally Printed Metal-Coated Flow-Field Plate for Lightweight Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 18(6), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1533-:d:1616153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rocha, C. & Knöri, T. & Ribeirinha, P. & Gazdzicki, P., 2024. "A review on flow field design for proton exchange membrane fuel cells: Challenges to increase the active area for MW applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Ashrafi, Moosa & Shams, Mehrzad, 2017. "The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels," Applied Energy, Elsevier, vol. 208(C), pages 1083-1096.
    3. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    4. Lin, Chien-Hung, 2013. "Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 898-904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    2. Li, Qifeng & Sun, Kai & Suo, Mengshan & Zeng, Zhen & Guan, Chengshuo & Liu, Huaiyu & Che, Zhizhao & Wang, Tianyou, 2024. "Water transport in PEMFC with metal foam flow fields: Visualization based on AI image recognition," Applied Energy, Elsevier, vol. 365(C).
    3. Chen, Huicui & Song, Zhen & Zhao, Xin & Zhang, Tong & Pei, Pucheng & Liang, Chen, 2018. "A review of durability test protocols of the proton exchange membrane fuel cells for vehicle," Applied Energy, Elsevier, vol. 224(C), pages 289-299.
    4. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    5. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    6. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    7. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    8. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    9. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    10. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    11. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    12. Bolouri, Amir & Kang, Chung Gil, 2014. "Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 71(C), pages 616-628.
    13. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    14. Luka Mihanović & Željko Penga & Lei Xing & Viktor Hacker, 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(12), pages 1-28, June.
    15. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    16. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    17. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    18. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    19. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    20. Nguyen, Ba Hieu & Kim, Hyun Chul, 2024. "Novel design of a staggered-trap/block flow field for use in serpentine proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1533-:d:1616153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.