IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p515-d1574392.html
   My bibliography  Save this article

Laboratory-to-Field Scale Numerical Investigation of Enhanced Oil Recovery Mechanism for Supercritical CO 2 -Energized Fracturing

Author

Listed:
  • Xiaolun Yan

    (CCDC Downhole Operation Company, Xi’an 710021, China)

  • Ting Zuo

    (CCDC Downhole Operation Company, Xi’an 710021, China
    National Engineering Laboratory of Low Permeability Oil and Gas Field Exploration and Development, Xi’an 710021, China)

  • Jianping Lan

    (CCDC Downhole Operation Company, Xi’an 710021, China)

  • Yu Jia

    (CCDC Downhole Operation Company, Xi’an 710021, China)

  • Cong Xiao

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum, Beijing 102249, China)

Abstract

This study systematically performs multi-scale numerical investigation of supercritical CO 2 -energized fracturing, widely employed for enhanced oil recovery (EOR) in tight oil and gas reservoirs. Two distinct models, spanning from core scale to field scale, are designed to explore the diffusion patterns of CO 2 into the matrix and its impact on crude oil production at varying scales. The core-scale model employs discrete grid regions to simulate the interaction between fractures and the core, facilitating a comprehensive understanding of CO 2 diffusion and its interaction with crude oil. Based on the core-scale numerical model, the wellbore treatment process is simulated, investigating CO 2 distribution within the core and its influence on crude oil during the well treatment phase. The field-scale model employs a series of grids to simulate fractures, the matrix, and the treatment zone. Additionally, a dilation model is employed to simulate fracture initiation and closure during CO 2 fracturing and production processes. The model explores CO 2 diffusion and its interaction with crude oil at different shut-in times and various injection rates, analyzing their impact on cumulative oil production within a year. The study concludes that during shut-in, CO 2 continues to diffuse deeper into the matrix until CO 2 concentration reaches an equilibrium within a certain range. At the core scale, CO 2 penetrates approximately 4 cm into the core after a 15-day shut-in, effectively reducing the viscosity within a range of about 3.5 cm. At the field scale, CO 2 diffusion extends up to approximately 4 m, with an effective viscosity reduction zone of about 3 m. Results suggest that, theoretically, higher injection rates and longer shut-in times yield better EOR results. However, considering economic factors, a 20-day shut-in period is preferred. Different injection rates indicate varying fracture conduction capabilities upon gas injection completion.

Suggested Citation

  • Xiaolun Yan & Ting Zuo & Jianping Lan & Yu Jia & Cong Xiao, 2025. "Laboratory-to-Field Scale Numerical Investigation of Enhanced Oil Recovery Mechanism for Supercritical CO 2 -Energized Fracturing," Energies, MDPI, vol. 18(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:515-:d:1574392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuloaga, Pavel & Yu, Wei & Miao, Jijun & Sepehrnoori, Kamy, 2017. "Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs," Energy, Elsevier, vol. 134(C), pages 181-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengshuang Du & Bahareh Nojabaei, 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control," Energies, MDPI, vol. 12(12), pages 1-33, June.
    2. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Du, Meng & Zhengming, Yang & Lv, Weifeng & Xiao, Qainhua & Xiang, Qi & Yao, Lanlan & Feng, Chun, 2024. "Experimental study on microscopic production characteristics and influencing factors during dynamic imbibition of shale reservoir with online NMR and fractal theory," Energy, Elsevier, vol. 310(C).
    4. Ren, Jitian & Xiao, Wenlian & Pu, Wanfen & Tang, Yanbing & Bernabé, Yves & Cheng, Qianrui & Zheng, Lingli, 2024. "Characterization of CO2 miscible/immiscible flooding in low-permeability sandstones using NMR and the VOF simulation method," Energy, Elsevier, vol. 297(C).
    5. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    6. Hao, Yongmao & Li, Zongfa & Su, Yuliang & Kong, Chuixian & Chen, Hong & Meng, Yang, 2022. "Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale," Energy, Elsevier, vol. 254(PB).
    7. Yang, Mingyang & Huang, Shijun & Zhao, Fenglan & Sun, Haoyue & Chen, Xinyang, 2024. "Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory," Energy, Elsevier, vol. 294(C).
    8. Rui Song & Ping Zhang & Xiaomin Tian & Famu Huang & Zhiwen Li & Jianjun Liu, 2022. "Study on Critical Drawdown Pressure of Sanding for Wellbore of Underground Gas Storage in a Depleted Gas Reservoir," Energies, MDPI, vol. 15(16), pages 1-18, August.
    9. Lin, Zeyu & Lu, Xinqian & Wang, Xiaoyan & Chang, Yuanhao & Kang, Kai & Zeng, Fanhua, 2024. "Effect of N2 impurity on CO2-based cyclic solvent injection process in enhancing heavy oil recovery and CO2 storage," Energy, Elsevier, vol. 290(C).
    10. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    11. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    12. Rahmad Syah & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & John William Grimaldo Guerrero & Mahyuddin K. M. Nasution & Afshin Davarpanah & Dadan Ramdan & Ahmed Sayed M. Metwally, 2021. "A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    13. Junrong Liu & Lu Sun & Zunzhao Li & Xingru Wu, 2019. "Experimental Study on Reducing CO 2 –Oil Minimum Miscibility Pressure with Hydrocarbon Agents," Energies, MDPI, vol. 12(10), pages 1-17, May.
    14. Fenglan Zhao & Changhe Yang & Shijun Huang & Mingyang Yang & Haoyue Sun & Xinyang Chen, 2024. "Experimental Investigation of CO 2 Huff-and-Puff Enhanced Oil Recovery in Fractured Low-Permeability Reservoirs: Core-Scale to Pore-Scale," Energies, MDPI, vol. 17(23), pages 1-15, December.
    15. Calderón, Andrés J. & Pekney, Natalie J., 2020. "Optimization of enhanced oil recovery operations in unconventional reservoirs," Applied Energy, Elsevier, vol. 258(C).
    16. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).
    17. Hong Tuo & Baoxing Liang & Qixiang Wang & Jianghua Yue & Long Tan & Yilong Li & Hao Yang & Zhan Meng, 2024. "Experimental Study on the Optimization of CO 2 Displacement and Huff-n-Puff Parameters in the Conglomerate Reservoirs of the Xinjiang Oilfield," Energies, MDPI, vol. 17(17), pages 1-13, September.
    18. Shi, Junjie & Cheng, Linsong & Cao, Renyi & Fang, Jie & Yang, Chenxu & Liu, Gaoling & Du, Xulin, 2023. "Analysis and quantitative evaluation of temperature influence mechanism of multi-cycle water huff-n-puff in ultra-low permeability reservoirs," Energy, Elsevier, vol. 263(PB).
    19. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).
    20. Baghernezhad, Danial & Siavashi, Majid & Nakhaee, Ali, 2019. "Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control," Energy, Elsevier, vol. 166(C), pages 610-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:515-:d:1574392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.