IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4437-d1471315.html
   My bibliography  Save this article

Experimental Study on the Optimization of CO 2 Displacement and Huff-n-Puff Parameters in the Conglomerate Reservoirs of the Xinjiang Oilfield

Author

Listed:
  • Hong Tuo

    (Experimental Testing Research Institute, Xinjiang Oilfield Company, CNPC, Karamay 834000, China)

  • Baoxing Liang

    (Experimental Testing Research Institute, Xinjiang Oilfield Company, CNPC, Karamay 834000, China)

  • Qixiang Wang

    (Experimental Testing Research Institute, Xinjiang Oilfield Company, CNPC, Karamay 834000, China)

  • Jianghua Yue

    (Experimental Testing Research Institute, Xinjiang Oilfield Company, CNPC, Karamay 834000, China)

  • Long Tan

    (Experimental Testing Research Institute, Xinjiang Oilfield Company, CNPC, Karamay 834000, China)

  • Yilong Li

    (State Key Laboratory of Oil-Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Hao Yang

    (State Key Laboratory of Oil-Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Zhan Meng

    (State Key Laboratory of Oil-Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

Abstract

Addressing the issue of poor water injection development effectiveness caused by strong water sensitivity damage in the conglomerate reservoirs of the Xinjiang Oilfield, this paper carries out experimental research on CO 2 displacement and CO 2 huff-n-puff to improve oil recovery in reservoirs under the conditions of reservoirs (86 °C, 44 MPa) by using a high-temperature and high-pressure large physical modeling repulsion device based on the artificial large-scale physical modeling of conglomerate oil reservoirs in the Xinjiang oilfield. The results showed that at any displacement rate, CO 2 displacement exhibits the trend where oil production initially increases and then decreases. The higher the gas injection rate, the higher the initial oil well production, and the shorter the time it takes for CO 2 to break through to the bottom of the well. After a breakthrough, production declines more rapidly. The oil recovery rate varies with different gas injection rates, initially increasing and then decreasing as the injection rate changes. The highest oil recovery rate was observed at an injection rate of 1.5 mL/min (equivalent to 38 t/d in the field). The efficiency of CO 2 displacement with multiple injection-production cycles is low; on the same scale of gas injection, single-cycle injection and production were more effective than multiple-cycle injection and production. CO 2 huff-n-puff can improve oil recovery, with a higher CO 2 injection pressure and a longer shut-in time leading to greater oil recovery. As the shut-in time increases, the efficiency of CO 2 oil exchange also improves. The strong supply capacity of the large physical model results in a tendency for the oil production curves of multiple huff-n-puff cycles to converge.

Suggested Citation

  • Hong Tuo & Baoxing Liang & Qixiang Wang & Jianghua Yue & Long Tan & Yilong Li & Hao Yang & Zhan Meng, 2024. "Experimental Study on the Optimization of CO 2 Displacement and Huff-n-Puff Parameters in the Conglomerate Reservoirs of the Xinjiang Oilfield," Energies, MDPI, vol. 17(17), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4437-:d:1471315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuloaga, Pavel & Yu, Wei & Miao, Jijun & Sepehrnoori, Kamy, 2017. "Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs," Energy, Elsevier, vol. 134(C), pages 181-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    2. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    3. Rahmad Syah & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & John William Grimaldo Guerrero & Mahyuddin K. M. Nasution & Afshin Davarpanah & Dadan Ramdan & Ahmed Sayed M. Metwally, 2021. "A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    4. Junrong Liu & Lu Sun & Zunzhao Li & Xingru Wu, 2019. "Experimental Study on Reducing CO 2 –Oil Minimum Miscibility Pressure with Hydrocarbon Agents," Energies, MDPI, vol. 12(10), pages 1-17, May.
    5. Fengshuang Du & Bahareh Nojabaei, 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control," Energies, MDPI, vol. 12(12), pages 1-33, June.
    6. Fenglan Zhao & Changhe Yang & Shijun Huang & Mingyang Yang & Haoyue Sun & Xinyang Chen, 2024. "Experimental Investigation of CO 2 Huff-and-Puff Enhanced Oil Recovery in Fractured Low-Permeability Reservoirs: Core-Scale to Pore-Scale," Energies, MDPI, vol. 17(23), pages 1-15, December.
    7. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Du, Meng & Zhengming, Yang & Lv, Weifeng & Xiao, Qainhua & Xiang, Qi & Yao, Lanlan & Feng, Chun, 2024. "Experimental study on microscopic production characteristics and influencing factors during dynamic imbibition of shale reservoir with online NMR and fractal theory," Energy, Elsevier, vol. 310(C).
    9. Ren, Jitian & Xiao, Wenlian & Pu, Wanfen & Tang, Yanbing & Bernabé, Yves & Cheng, Qianrui & Zheng, Lingli, 2024. "Characterization of CO2 miscible/immiscible flooding in low-permeability sandstones using NMR and the VOF simulation method," Energy, Elsevier, vol. 297(C).
    10. Calderón, Andrés J. & Pekney, Natalie J., 2020. "Optimization of enhanced oil recovery operations in unconventional reservoirs," Applied Energy, Elsevier, vol. 258(C).
    11. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    12. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).
    13. Shi, Junjie & Cheng, Linsong & Cao, Renyi & Fang, Jie & Yang, Chenxu & Liu, Gaoling & Du, Xulin, 2023. "Analysis and quantitative evaluation of temperature influence mechanism of multi-cycle water huff-n-puff in ultra-low permeability reservoirs," Energy, Elsevier, vol. 263(PB).
    14. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).
    15. Hao, Yongmao & Li, Zongfa & Su, Yuliang & Kong, Chuixian & Chen, Hong & Meng, Yang, 2022. "Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale," Energy, Elsevier, vol. 254(PB).
    16. Baghernezhad, Danial & Siavashi, Majid & Nakhaee, Ali, 2019. "Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control," Energy, Elsevier, vol. 166(C), pages 610-623.
    17. Zhang, Xiang & Wei, Bing & You, Junyu & Liu, Jiang & Wang, Dianlin & Lu, Jun & Tong, Jing, 2021. "Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique," Energy, Elsevier, vol. 236(C).
    18. Yang, Mingyang & Huang, Shijun & Zhao, Fenglan & Sun, Haoyue & Chen, Xinyang, 2024. "Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory," Energy, Elsevier, vol. 294(C).
    19. Lv, Qichao & Rashidi-Khaniabadi, Ali & Zheng, Rong & Zhou, Tongke & Mohammadi, Mohammad-Reza & Hemmati-Sarapardeh, Abdolhossein, 2023. "Modelling CO2 diffusion coefficient in heavy crude oils and bitumen using extreme gradient boosting and Gaussian process regression," Energy, Elsevier, vol. 275(C).
    20. Xingbang Meng & Zhan Meng & Jixiang Ma & Tengfei Wang, 2018. "Performance Evaluation of CO 2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs," Energies, MDPI, vol. 12(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4437-:d:1471315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.