IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p485-d1573343.html
   My bibliography  Save this article

Controlling Engine Load Distribution in LNG Ship Propulsion Systems to Optimize Gas Emissions and Fuel Consumption

Author

Listed:
  • Siniša Martinić-Cezar

    (Faculty of Maritime Studies, University of Split, 21000 Split, Croatia)

  • Zdeslav Jurić

    (Faculty of Maritime Studies, University of Split, 21000 Split, Croatia)

  • Nur Assani

    (Faculty of Maritime Studies, University of Split, 21000 Split, Croatia)

  • Nikola Račić

    (Faculty of Maritime Studies, University of Split, 21000 Split, Croatia)

Abstract

The increasing emphasis on environmental sustainability and stricter gas emissions regulations has made the optimization of fuel and emissions a crucial factor for marine propulsion systems. This paper investigates the potential to improve fuel efficiency and reduce emissions of LNG ship propulsion systems by using different load sharing strategies in Dual-Fuel Diesel-Electric (DFDE) propulsion systems. Using data collected from on-board cyclic measurements and an optimization model, the effects of different load sharing strategies for various types of fuel, such as HFO, MDO, and LNG, under different engine load conditions were investigated. The results of these strategies are compared with those of on-board power management systems (PMS), which evenly allocate power among the engines, irrespective of fuel usage and emission levels. The results show that load adjustments according to the optimization model can considerably increase fuel economy and contribute to the reduction of CO 2 and NO x compared to standard practice at the equal load in different ship operating modes. Our approach introduces an innovative optimization concept that has been proven to improve fuel efficiency and reduce emissions beyond standard practices. This paper demonstrates the robustness of the model in balancing environmental and operational objectives and presents an effective approach for more sustainable and efficient ship operations. The results are in line with global sustainability efforts and provide valuable insights for future innovations in energy optimization and ship emission control.

Suggested Citation

  • Siniša Martinić-Cezar & Zdeslav Jurić & Nur Assani & Nikola Račić, 2025. "Controlling Engine Load Distribution in LNG Ship Propulsion Systems to Optimize Gas Emissions and Fuel Consumption," Energies, MDPI, vol. 18(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:485-:d:1573343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    2. Siniša Martinić-Cezar & Zdeslav Jurić & Nur Assani & Branko Lalić, 2024. "Optimization of Fuel Consumption by Controlling the Load Distribution between Engines in an LNG Ship Electric Propulsion Plant," Energies, MDPI, vol. 17(15), pages 1-21, July.
    3. Pang, Bo & Liu, Siyang & Zhu, Haijia & Feng, Yanbiao & Dong, Zuomin, 2024. "Real-time optimal control of an LNG-fueled hybrid electric ship considering battery degradations," Energy, Elsevier, vol. 296(C).
    4. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    5. Di Blasio, G. & Belgiorno, G. & Beatrice, C., 2017. "Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio," Applied Energy, Elsevier, vol. 204(C), pages 726-740.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siniša Martinić-Cezar & Zdeslav Jurić & Nur Assani & Branko Lalić, 2024. "Optimization of Fuel Consumption by Controlling the Load Distribution between Engines in an LNG Ship Electric Propulsion Plant," Energies, MDPI, vol. 17(15), pages 1-21, July.
    2. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    3. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    4. Ahmad O. Hasan & Khamis Essa & Mohamed R. Gomaa, 2022. "Synthesis, Structure Characterization and Study of a New Kind of Catalyst: A Monolith of Nickel Made by Additive Manufacturing Coated with Platinum," Energies, MDPI, vol. 15(20), pages 1-13, October.
    5. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    7. Li, Yuqiang & Huang, Long & Chen, Yong & Tang, Wei, 2024. "Stratified premixed combustion optimization of a natural gas/biodiesel dual direct injection engine," Energy, Elsevier, vol. 294(C).
    8. Li, Menghan & Wu, Hanming & Zhang, Tiechen & Shen, Boxiong & Zhang, Qiang & Li, Zhenguo, 2020. "A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    10. Gülcan, Halil Erdi & Gültekin, Nurullah & Ciniviz, Murat, 2024. "Experimental investigation of the effect of variable valve lift on combustion stability and exhaust emissions in a diesel/methane CRDI engine," Energy, Elsevier, vol. 300(C).
    11. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    12. Li, Menghan & Zhang, Qiang & Li, Guoxiang & Shao, Sidong, 2015. "Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 90(P2), pages 1251-1260.
    13. Li, Yuqiang & Huang, Long & Chen, Yong & Tang, Wei, 2024. "Design and optimization of combustion chamber geometry and fuel spray targeting of a natural gas/biodiesel dual direct injection engine," Energy, Elsevier, vol. 311(C).
    14. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    15. Jatoth, Ramachander & Gugulothu, Santhosh Kumar & Ravi kiran Sastry, G., 2021. "Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode," Energy, Elsevier, vol. 225(C).
    16. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    17. Yang, W.M. & An, H. & Li, J. & Duan, L., 2015. "Impact of methane addition on the performance of biodiesel fueled diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 784-792.
    18. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    19. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    20. Roberta De Robbio & Maria Cristina Cameretti & Ezio Mancaruso & Raffaele Tuccillo & Bianca Maria Vaglieco, 2021. "CFD Study and Experimental Validation of a Dual Fuel Engine: Effect of Engine Speed," Energies, MDPI, vol. 14(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:485-:d:1573343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.