IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5834-d1686743.html
   My bibliography  Save this article

Simulation of a Hybrid Propulsion System on Tugboats Operating in the Strait of Istanbul

Author

Listed:
  • Mustafa Nuran

    (Department of Marine Engineering, Maritime Faculty, Dokuz Eylül University, İzmir 35250, Türkiye)

  • Murat Bayraktar

    (Department of Marine Engineering, Maritime Faculty, Zonguldak Bülent Ecevit University, Zonguldak 67300, Türkiye)

  • Onur Yuksel

    (Department of Marine Engineering, Maritime Faculty, Zonguldak Bülent Ecevit University, Zonguldak 67300, Türkiye
    Liverpool Logistics Offshore and Marine Research Institute (LOOM), Faculty of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK)

Abstract

The implementation of hybrid propulsion systems in vessels has gained prominence due to their significant advantages in energy efficiency and their reduction in harmful emissions, particularly during low engine load operations. This study evaluates hybrid propulsion system applications in two different tugboats, focusing on fuel consumption and engine load across eight distinct operational scenarios, including Istanbul Strait crossings and towing and pushing manoeuvres. The scenarios incorporate asynchronous electric motors with varying power ratings, lead-acid and lithium iron phosphate batteries with distinct storage capacities, and photovoltaic panels of different sizes. The highest fuel savings of 72.4% were recorded in the second scenario, which involved only towing and pushing operations using lithium iron phosphate batteries. In contrast, the lowest fuel savings of 5.2% were observed in the sixth scenario, focused on a strait crossing operation employing lead-acid batteries. Although integrating larger-scale batteries into hybrid propulsion systems is vital for extended ship operations, their adoption is often limited by space and weight constraints, particularly on tugboats. Nevertheless, ongoing advancements in hybrid system technologies are expected to enable the integration of larger, more efficient systems, thereby enhancing fuel-saving potential.

Suggested Citation

  • Mustafa Nuran & Murat Bayraktar & Onur Yuksel, 2025. "Simulation of a Hybrid Propulsion System on Tugboats Operating in the Strait of Istanbul," Sustainability, MDPI, vol. 17(13), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5834-:d:1686743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laryea, Harriet & Schiffauerova, Andrea, 2024. "A novel standalone hybrid renewable energy systems onboard conventional and autonomous tugboats," Energy, Elsevier, vol. 303(C).
    2. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    3. Maloberti, Luca & Zaccone, Raphael, 2025. "An environmentally sustainable energy management strategy for marine hybrid propulsion," Energy, Elsevier, vol. 316(C).
    4. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    5. Siniša Martinić-Cezar & Zdeslav Jurić & Nur Assani & Nikola Račić, 2025. "Controlling Engine Load Distribution in LNG Ship Propulsion Systems to Optimize Gas Emissions and Fuel Consumption," Energies, MDPI, vol. 18(3), pages 1-22, January.
    6. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    7. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    2. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
    4. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    5. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    6. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    7. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    8. Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
    9. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    10. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    11. Changwen Zheng & Yunlong Ge & Ziqiang Chen & Deyang Huang & Jian Liu & Shiyao Zhou, 2017. "Diagnosis Method for Li-Ion Battery Fault Based on an Adaptive Unscented Kalman Filter," Energies, MDPI, vol. 10(11), pages 1-14, November.
    12. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    13. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    14. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    15. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    16. John E. Candelo-Beccera & Leonardo Bohórquez Maldonado & Edwin Paipa Sanabria & Hernán Vergara Pestana & José Jiménez García, 2023. "Technological Alternatives for Electric Propulsion Systems in the Waterway Sector," Energies, MDPI, vol. 16(23), pages 1-16, November.
    17. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    18. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    19. Hui Ouyang & Weibo Li & Feng Gao & Kangzheng Huang & Peng Xiao, 2024. "Research on Fault Diagnosis of Ship Diesel Generator System Based on IVY-RF," Energies, MDPI, vol. 17(22), pages 1-18, November.
    20. Seunghwan Jung & Minseok Kim & Eunkyeong Kim & Baekcheon Kim & Jinyong Kim & Kyeong-Hee Cho & Hyang-A Park & Sungshin Kim, 2024. "The Early Detection of Faults for Lithium-Ion Batteries in Energy Storage Systems Using Independent Component Analysis with Mahalanobis Distance," Energies, MDPI, vol. 17(2), pages 1-23, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5834-:d:1686743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.