IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4635-d1738803.html
   My bibliography  Save this article

A Robust Collaborative Optimization of Multi-Microgrids and Shared Energy Storage in a Fraudulent Environment

Author

Listed:
  • Haihong Bian

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Kai Ji

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract

In the context of the coordinated operation of microgrids and community energy storage systems, achieving optimal resource allocation under complex and uncertain conditions has emerged as a prominent research focus. This study proposes a robust collaborative optimization model for microgrids and community energy storage systems under a game-theoretic environment where potential fraudulent behavior is considered. A multi-energy collaborative system model is first constructed, integrating multiple uncertainties in source-load pricing, and a max-min robust optimization strategy is employed to improve scheduling resilience. Secondly, a game-theoretic model is introduced to identify and suppress manipulative behaviors by dishonest microgrids in energy transactions, based on a Nash bargaining mechanism. Finally, a distributed collaborative solution framework is developed using the Alternating Direction Method of Multipliers and Column-and-Constraint Generation to enable efficient parallel computation. Simulation results indicate that the framework reduces the alliance’s total cost from CNY 66,319.37 to CNY 57,924.89, saving CNY 8394.48. Specifically, the operational costs of MG1, MG2, and MG3 were reduced by CNY 742.60, CNY 1069.92, and CNY 1451.40, respectively, while CES achieved an additional revenue of CNY 5130.56 through peak shaving and valley filling operations. Furthermore, this distributed algorithm converges within 6–15 iterations and demonstrates high computational efficiency and robustness across various uncertain scenarios.

Suggested Citation

  • Haihong Bian & Kai Ji, 2025. "A Robust Collaborative Optimization of Multi-Microgrids and Shared Energy Storage in a Fraudulent Environment," Energies, MDPI, vol. 18(17), pages 1-36, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4635-:d:1738803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    2. Zhang, Sen & Hu, Weihao & Cao, Xilin & Du, Jialin & Zhao, Yincheng & Bai, Chunguang & Liu, Wen & Tang, Ming & Zhan, Wei & Chen, Zhe, 2024. "A two-stage robust low-carbon operation strategy for interconnected distributed energy systems considering source-load uncertainty," Applied Energy, Elsevier, vol. 368(C).
    3. Xiedong Gao & Xinyan Zhang, 2024. "Robust Collaborative Scheduling Strategy for Multi-Microgrids of Renewable Energy Based on a Non-Cooperative Game and Profit Allocation Mechanism," Energies, MDPI, vol. 17(2), pages 1-22, January.
    4. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
    5. Maysam Abbasi & Ehsan Abbasi & Li Li & Ricardo P. Aguilera & Dylan Lu & Fei Wang, 2023. "Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods," Energies, MDPI, vol. 16(1), pages 1-36, January.
    6. Ferrada, Francisco & Babonneau, Frederic & Homem-de-Mello, Tito & Jalil-Vega, Francisca, 2023. "The role of hydrogen for deep decarbonization of energy systems: A Chilean case study," Energy Policy, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Gyu Kim & Hoon Lee & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2023. "Hybrid AC/DC Microgrid Energy Management Strategy Based on Two-Step ANN," Energies, MDPI, vol. 16(4), pages 1-23, February.
    2. Peng Liu & Tieyan Zhang & Furui Tian & Yun Teng & Miaodong Yang, 2024. "Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory," Energies, MDPI, vol. 17(24), pages 1-20, December.
    3. Zhang, Ziqi & Li, Peng & Ji, Haoran & Zhao, Jinli & Xi, Wei & Wu, Jianzhong & Wang, Chengshan, 2024. "Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short," Applied Energy, Elsevier, vol. 372(C).
    4. Toni Alex Reis Borges & Filipe Cardoso Brito & Rafael Guimarães Oliveira dos Santos & Paulo de Tarso Nascimento & Celso Barreto da Silva & Roberta Mota Panizio & Hugo Saba & Aloísio Santos Nascimento , 2025. "Smart Technologies Applied in Microgrids of Renewable Energy Sources: A Systematic Review," Energies, MDPI, vol. 18(11), pages 1-20, May.
    5. Xuan, Ang & Shen, Xinwei & Luo, Yangfan, 2025. "Bi-level Integrated Electricity and Natural Gas System retrofit planning model considering Carbon Capture, Utilization and Storage," Applied Energy, Elsevier, vol. 385(C).
    6. Kayode Ebenezer Ojo & Akshay Kumar Saha & Viranjay Mohan Srivastava, 2025. "Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities," Energies, MDPI, vol. 18(14), pages 1-26, July.
    7. Liu, Ke & Liu, Yanli & Si, Gang & Lu, Xin & Xie, Yan, 2025. "Punctual V2G scheduling circle: Evaluate and enhance transfer V2G capability through adaptive redistribution," Applied Energy, Elsevier, vol. 383(C).
    8. Paolo Tenti & Tommaso Caldognetto, 2023. "Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids," Energies, MDPI, vol. 16(5), pages 1-23, February.
    9. Olleik, Majd & Tarhini, Hussein & Auer, Hans, 2025. "Integrating upstream natural gas and electricity planning in times of energy transition," Applied Energy, Elsevier, vol. 377(PB).
    10. Wei Wei & Li Ye & Yi Fang & Yingchun Wang & Xi Chen & Zhenhua Li, 2023. "Optimal Allocation of Energy Storage Capacity in Microgrids Considering the Uncertainty of Renewable Energy Generation," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    11. Luis Maita Jaramillo & Diego Díaz-Sinche, 2025. "Advancing Electric Mobility in Andean Countries: A Systematic Review and Case Study of Ecuador," Sustainability, MDPI, vol. 17(17), pages 1-31, September.
    12. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.
    13. Emigdio Chavez-Angel & Alejandro Castro-Alvarez & Nicolas Sapunar & Francisco Henríquez & Javier Saavedra & Sebastián Rodríguez & Iván Cornejo & Lindley Maxwell, 2023. "Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile," Energies, MDPI, vol. 16(11), pages 1-12, June.
    14. Li, Fei & Wang, Dong & Guo, Hengdao & Zhang, Jianhua, 2024. "Distributionally Robust Optimization for integrated energy system accounting for refinement utilization of hydrogen and ladder-type carbon trading mechanism," Applied Energy, Elsevier, vol. 367(C).
    15. Vargas-Ferrer, Pedro & Jalil-Vega, Francisca & Pozo, David & Sauma, Enzo, 2025. "Complying with low-emission hydrogen standards in long-term integrated supply chains," Energy Policy, Elsevier, vol. 198(C).
    16. Sahar Zargarzadeh & Aditya Ramnarayan & Felipe de Castro & Michael Ohadi, 2024. "ML-Enabled Solar PV Electricity Generation Projection for a Large Academic Campus to Reduce Onsite CO 2 Emissions," Energies, MDPI, vol. 17(23), pages 1-29, December.
    17. Bawantha Indrajith & Kosala Gunawardane, 2025. "Navigating the Intersection of Microgrids and Hydrogen: Evolutionary Trends, Challenges, and Future Strategies," Energies, MDPI, vol. 18(3), pages 1-24, January.
    18. Zhang, Sen & Hu, Weihao & Du, Jialin & Cao, Xilin & Bai, Chunguang & Liu, Wen & Wang, Daojuan & Chen, Zhe, 2025. "Hierarchical distributionally robust scheduling strategy for distributed energy systems in the energy-sharing environment," Applied Energy, Elsevier, vol. 388(C).
    19. Li, Zheng & Du, Binglin & Petersen, Nils & Liu, Pei & Wirsum, Manfred, 2024. "Potential of hydrogen and thermal storage in the long-term transition of the power sector: A case study of China," Energy, Elsevier, vol. 307(C).
    20. Lefeng Cheng & Xin Wei & Manling Li & Can Tan & Meng Yin & Teng Shen & Tao Zou, 2024. "Integrating Evolutionary Game-Theoretical Methods and Deep Reinforcement Learning for Adaptive Strategy Optimization in User-Side Electricity Markets: A Comprehensive Review," Mathematics, MDPI, vol. 12(20), pages 1-56, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4635-:d:1738803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.