IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4606-d1737921.html
   My bibliography  Save this article

Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends

Author

Listed:
  • Szymon Wyrąbkiewicz

    (Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Jerzy Kaszkowiak

    (Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Marcin Zastempowski

    (Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Maciej Gajewski

    (Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

Abstract

This article presents the results of research on the effects of various bioethanol concentrations in gasoline blends (E0, E10, E30, E50, E100) and increased fuel dosage (+10% and +20%) on spark-ignition engine performance and exhaust emissions. Experiments were conducted on a chassis dynamometer under strictly controlled laboratory conditions using a MAHA MGT-5 exhaust gas analyzer and a MAHA MPM-4 particulate matter analyzer. Power, torque, carbon monoxide (CO), carbon dioxide (CO 2 ), hydrocarbons (HC), oxygen (O 2 ), and particulate matter emissions were analyzed. It was found that up to a 50% bioethanol content, power and torque remained stable, while with E100, a significant decrease in these parameters was observed, partially offset by the increased fuel dosage. CO emissions systematically decreased with increasing bioethanol content, reaching minimum values at E100, while HC emissions generally decreased. CO 2 content did not show clear trends, while O 2 levels in the exhaust gas increased with higher ethanol concentrations. Particulate matter emissions were irregular, with the lowest values at E30 for the nominal dose and at E10 for the increased dose. The studies revealed significant nonlinearities in the effect of ethanol concentration on emissions, challenging the common assumption of monotonic changes. The results have practical implications for optimizing the calibration of engine control systems, meeting emission standards, and assessing the potential of bioethanol as a road transport fuel.

Suggested Citation

  • Szymon Wyrąbkiewicz & Jerzy Kaszkowiak & Marcin Zastempowski & Maciej Gajewski, 2025. "Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends," Energies, MDPI, vol. 18(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4606-:d:1737921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    2. Demiray, Ekin & Karatay, Sevgi Ertuğrul & Dönmez, Gönül, 2018. "Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis," Energy, Elsevier, vol. 159(C), pages 988-994.
    3. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    4. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Natalia Stefania Piotrowska & Stanisław Zbigniew Czachorowski & Mariusz Jerzy Stolarski, 2020. "Ground Beetles ( Carabidae ) in the Short-Rotation Coppice Willow and Poplar Plants—Synergistic Benefits System," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    3. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Rocio Camarena-Martinez & Rocio A. Lizarraga-Morales & Roberto Baeza-Serrato, 2021. "Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network," Energies, MDPI, vol. 14(21), pages 1-13, November.
    5. Gabriela N. Tenea & Fabricio Veintimilla, 2021. "Potential Use of Native Yeasts to Produce Bioethanol and Other Byproducts from Black Sugarcane, an Alternative to Increment the Subsistence Farming in Northern Ecuador," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    6. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    7. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    8. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    9. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    10. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    11. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    12. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    13. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    14. Londoño-Pulgarin, Diana & Cardona-Montoya, Giovanny & Restrepo, Juan C. & Muñoz-Leiva, Francisco, 2021. "Fossil or bioenergy? Global fuel market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Maciej Gajewski & Szymon Wyrąbkiewicz & Jerzy Kaszkowiak, 2025. "Effects of Ethanol–Gasoline Blends on the Performance and Emissions of a Vehicle Spark-Ignition Engine," Energies, MDPI, vol. 18(13), pages 1-14, July.
    16. Xu, Min & Jiang, Peng & Zhong, Wenjun & Yan, Feibin & Liu, Xu & Wang, Qian, 2023. "Experimental investigation combined with steady-state and transient-state tests on soot characteristics of hydrogenated catalytic biodiesel/n-butanol blends," Energy, Elsevier, vol. 282(C).
    17. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Arkadiusz Gola, 2019. "The Effects of Pressure and Temperature on the Process of Auto-Ignition and Combustion of Rape Oil and Its Mixtures," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    18. Zeki Yılbaşı, 2025. "Biofuels, E-Fuels, and Waste-Derived Fuels: Advances, Challenges, and Future Directions," Sustainability, MDPI, vol. 17(13), pages 1-62, July.
    19. Ibrahim M. Hezam & Naga Rama Devi Vedala & Bathina Rajesh Kumar & Arunodaya Raj Mishra & Fausto Cavallaro, 2023. "Assessment of Biofuel Industry Sustainability Factors Based on the Intuitionistic Fuzzy Symmetry Point of Criterion and Rank-Sum-Based MAIRCA Method," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    20. Rosli, Siti Suhailah & Amalina Kadir, Wan Nadiah & Wong, Chung Yiin & Han, Fon Yee & Lim, Jun Wei & Lam, Man Kee & Yusup, Suzana & Kiatkittipong, Worapon & Kiatkittipong, Kunlanan & Usman, Anwar, 2020. "Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4606-:d:1737921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.