IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4513-d1732287.html
   My bibliography  Save this article

Electro-Thermal Transient Characteristics of Photovoltaic–Thermal (PV/T)–Heat Pump System

Author

Listed:
  • Wenlong Zou

    (Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Gang Yu

    (Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China)

  • Xiaoze Du

    (Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China
    School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of step perturbations: solar irradiance reduction, compressor operation, condenser water flow rate variations, and thermal storage tank volume changes. This study highlights the thermal storage tank’s critical role. For V tank = 2 m 3 , water tank volume significantly suppresses the water tank and PV/T collector temperature fluctuations caused by solar irradiance reduction. PV/T collector temperature fluctuation suppression improved by 46.7%. For the PV/T heat pump system in this study, the water tank volume was selected between 1 and 1.5 m 3 to optimize the balance of thermal inertia and cost. Despite PV cell electrical efficiency gains from PV cell temperature reductions caused by solar irradiance reduction, power recovery remains limited. Compressor dynamic performance exhibits asymmetry: the hot water temperature drop caused by speed reduction exceeds the rise from speed increase. Load fluctuations reveal heightened risk: load reduction triggers a hot water 7.6 °C decline versus a 2.2 °C gain under equivalent load increases. Meanwhile, water flow rate variation in condenser identifies electro-thermal time lags (100 s thermal and 50 s electrical stabilization), necessitating predictive compressor control to prevent temperature and compressor operation oscillations caused by system condition changes. These findings advance hybrid renewable systems by resolving transient coupling mechanisms and enhancing operational resilience, offering actionable strategies for PV/T–heat pump deployment in building energy applications.

Suggested Citation

  • Wenlong Zou & Gang Yu & Xiaoze Du, 2025. "Electro-Thermal Transient Characteristics of Photovoltaic–Thermal (PV/T)–Heat Pump System," Energies, MDPI, vol. 18(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4513-:d:1732287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    2. Zou, Wenlong & Yu, Gang & Du, Xiaoze, 2024. "Energy and exergy analysis of photovoltaic thermal collectors: Comprehensive investigation of operating parameters in different dynamic models," Renewable Energy, Elsevier, vol. 221(C).
    3. abbas, Sajid & Yuan, Yanping & Hassan, Atazaz & Zhou, Jinzhi & Zeng, Chao & Yu, Min & Emmanuel, Bisengimana, 2022. "Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator," Energy, Elsevier, vol. 254(PB).
    4. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    5. Qu, Minglu & Yan, Xufeng & Wang, Haiyang & Hei, Yingxiao & Liu, Hongzhi & Li, Zhao, 2022. "Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater," Renewable Energy, Elsevier, vol. 194(C), pages 1084-1097.
    6. Sun, L.L. & Li, M. & Yuan, Y.P. & Cao, X.L. & Lei, B. & Yu, N.Y., 2016. "Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings," Renewable Energy, Elsevier, vol. 93(C), pages 291-301.
    7. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Ebrahimnia-Bajestan, Ehsan & Davidson, John & Bailie, David, 2020. "Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity," Renewable Energy, Elsevier, vol. 148(C), pages 558-572.
    8. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    9. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    10. Zou, Wenlong & Yu, Gang & Du, Xiaoze & Wu, Hongwei, 2025. "Dynamic performance of photovoltaic thermal-heat pump system with connection configurations," Renewable Energy, Elsevier, vol. 242(C).
    11. Vallati, A. & Ocłoń, P. & Colucci, C. & Mauri, L. & de Lieto Vollaro, R. & Taler, J., 2019. "Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector," Energy, Elsevier, vol. 174(C), pages 91-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenlong & Yu, Gang & Du, Xiaoze & Wu, Hongwei, 2025. "Dynamic performance of photovoltaic thermal-heat pump system with connection configurations," Renewable Energy, Elsevier, vol. 242(C).
    2. Fang, Hao & Zhang, Ning & Cai, Guojun & Chen, Haifei & Ma, Jinwei & Wu, Deyi & Du, Tao & Wang, Yunjie, 2024. "Operation strategy optimization and heat transfer characteristic analysis of photovoltaic/thermal module series connected with flat plate solar collector: System experimental study," Renewable Energy, Elsevier, vol. 229(C).
    3. Wojciech Luboń & Artur Jachimowski & Michał Łyczba & Grzegorz Pełka & Mateusz Wygoda & Dominika Dawiec & Roger Książek & Wojciech Sorociak & Klaudia Krawiec, 2025. "Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector," Energies, MDPI, vol. 18(13), pages 1-18, July.
    4. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    5. Aktekeli, Burak & Aktaş, Mustafa & Koşan, Meltem & Arslan, Erhan & Şevik, Seyfi, 2025. "Experimental study of a novel design bi-fluid based photovoltaic thermal (PVT)-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 238(C).
    6. Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
    7. Sheta, Mahmoud & Hassan, Hamdy, 2023. "Performance investigation of standalone multi-effect mechanical vapor compression desalination system powered by cascade photovoltaic/thermal-photovoltaic solar field-assisted heat pump system," Renewable Energy, Elsevier, vol. 219(P2).
    8. Song, Zhiying & Zhang, Yuzhe & Ji, Jie & He, Wei & Hu, Zhongting & Xuan, Qingdong, 2024. "Yearly photoelectric/thermal and economic performance comparison between CPV and FPV dual-source heat pump systems in different regions," Energy, Elsevier, vol. 289(C).
    9. Mi, Peiyuan & Zhang, Jili & Han, Youhua & Guo, Xiaochao, 2022. "Operation performance study and prediction of photovoltaic thermal heat pump system engineering in winter," Applied Energy, Elsevier, vol. 306(PB).
    10. Choi, Hwi-Ung & Choi, Kwang-Hwan, 2023. "Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater," Energy, Elsevier, vol. 285(C).
    11. Li, Sheng & Cui, Liping & Zhang, Xuejun & Dai, Zhengshu & Zhang, Changxing & Gao, Jinshuang & Zhao, Yazhou, 2025. "Simulation and experimental study on the performance of solar phase change slurry direct evaporation photovoltaic/thermal heat pump," Energy, Elsevier, vol. 324(C).
    12. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    13. Qu, Lei & Wang, Dengjia & Zhou, Yong & Yuan, Wangqiu & Liu, Yanfeng & Fan, Jianhua, 2025. "A new capacity design method for PV-ASHP system based on energy flow mechanism and energy supply-demand balance," Renewable Energy, Elsevier, vol. 239(C).
    14. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    15. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    16. Yin, Linfei & Xiong, Yi, 2024. "Incremental learning user profile and deep reinforcement learning for managing building energy in heating water," Energy, Elsevier, vol. 313(C).
    17. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    18. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    19. Cisek, Piotr & Kaczmarski, Karol & Nowak-Ocłoń, Marzena & Piwowarczyk, Monika & Ojczyk, Grzegorz & Vallati, Andrea, 2025. "Design and performance calculations of a solar-driven combined cooling, heating and power system," Energy, Elsevier, vol. 322(C).
    20. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4513-:d:1732287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.