IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics036054422501271x.html
   My bibliography  Save this article

Design and performance calculations of a solar-driven combined cooling, heating and power system

Author

Listed:
  • Cisek, Piotr
  • Kaczmarski, Karol
  • Nowak-Ocłoń, Marzena
  • Piwowarczyk, Monika
  • Ojczyk, Grzegorz
  • Vallati, Andrea

Abstract

Moving towards sustainable energy solutions requires efficient tools for designing and evaluating renewable energy systems. This study introduces the RESHeat software, a novel computational tool developed to support the design and preliminary assessment of Combined Cooling, Heating, and Power (CCHP) systems integrating renewable energy sources (RES). Unlike conventional dynamic simulation tools that demand advanced expertise and computational resources, RESHeat employs one-dimensional mathematical models, allowing for rapid and user-friendly system configuration. The software enables the selection and optimisation of system components, including heat pumps, photovoltaic panels, thermal energy storage, and solar collectors, while providing economic and environmental impact assessments. The article presents the methodology for determining heating power and heating energy demand, introduces a developed climatic database, and outlines the fundamental equations used by the software to estimate energy yields from RES installations. To validate its accuracy, RESHeat's performance calculations were compared against the commercial Polysun software, with results showing discrepancies below 20 %, confirming its reliability. The findings highlight the software's potential as a decision-support tool for engineers, policymakers, and investors, accelerating the adoption of RES-based CCHP systems in residential and commercial applications.

Suggested Citation

  • Cisek, Piotr & Kaczmarski, Karol & Nowak-Ocłoń, Marzena & Piwowarczyk, Monika & Ojczyk, Grzegorz & Vallati, Andrea, 2025. "Design and performance calculations of a solar-driven combined cooling, heating and power system," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501271x
    DOI: 10.1016/j.energy.2025.135629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501271X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & Baheri, Alireza & Ahmadinejad, Mehrdad & Zadsar, Narjes & Fard, Ghazaleh Yeganeh & Ali bedakhanian, & Aghajari, Mona & Ghodrat, Maryam & Rahman, Moh, 2024. "Modeling, optimization, and economic analysis of a comprehensive CCHP system with fuel cells, reverse osmosis, batteries, and hydrogen storage subsystems Powered by renewable energy sources," Renewable Energy, Elsevier, vol. 220(C).
    2. Pan, Ting & Ocłoń, Paweł & Cisek, Piotr & Nowak-Ocłoń, Marzena & Yildirim, Mehmet Ali & Wang, Bohong & Van Fan, Yee & Varbanov, Petar Sabev & Wan Alwi, Sharifah Rafidah, 2024. "A comparative life cycle assessment of solar combined cooling, heating, and power systems based on RESHeat technology," Applied Energy, Elsevier, vol. 359(C).
    3. Wiesław Zima & Artur Cebula & Piotr Cisek, 2020. "Mathematical Model of a Sun-Tracked Parabolic Trough Collector and Its Verification," Energies, MDPI, vol. 13(16), pages 1-24, August.
    4. Zima, Wiesław & Cisek, Piotr & Cebula, Artur, 2021. "Mathematical model of an innovative double U-tube sun-tracked PTC and its experimental verification," Energy, Elsevier, vol. 235(C).
    5. Zhao, Tengfei & Ahmad, Sayed Fayaz & Agrawal, Manoj Kumar & Ahmad Bani Ahmad, Ahmad Yahiya & Ghfar, Ayman A. & Valsalan, Prajoona & Shah, Nehad Ali & Gao, Xiaomin, 2024. "Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant," Energy, Elsevier, vol. 295(C).
    6. Vallati, A. & Ocłoń, P. & Colucci, C. & Mauri, L. & de Lieto Vollaro, R. & Taler, J., 2019. "Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector," Energy, Elsevier, vol. 174(C), pages 91-96.
    7. Ali Yildirim, Mehmet & Bartyzel, Filip & Vallati, Andrea & Woźniak, Magdalena Kozień & Ocłoń, Paweł, 2023. "Efficient energy storage in residential buildings integrated with RESHeat system," Applied Energy, Elsevier, vol. 335(C).
    8. Uchechi Ukaegbu & Lagouge Tartibu & C. W. Lim, 2024. "Optimization of Solar-Assisted CCHP Systems: Enhancing Efficiency and Reducing Emissions Through Harris Hawks-Based Mathematical Modeling," Sustainability, MDPI, vol. 16(23), pages 1-21, December.
    9. Soheyli, Saman & Shafiei Mayam, Mohamad Hossein & Mehrjoo, Mehri, 2016. "Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm," Applied Energy, Elsevier, vol. 184(C), pages 375-395.
    10. Pan, Ting & Ocłoń, Paweł & He, Linhuan & Van Fan, Yee & Zhang, Shuhao & Wang, Bohong & Nowak-Ocłoń, Marzena & Tóth, Árpád & Varbanov, Petar Sabev, 2024. "Strategic integration of residential electricity: An optimisation model for solar energy utilisation and carbon reduction," Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Xin-Yu & Wang, Zhi-Hua & Li, Ming-Chen & Li, Ling-Ling, 2025. "Optimization and performance analysis of integrated energy systems considering hybrid electro-thermal energy storage," Energy, Elsevier, vol. 314(C).
    2. Pan, Ting & Ocłoń, Paweł & He, Linhuan & Van Fan, Yee & Zhang, Shuhao & Wang, Bohong & Nowak-Ocłoń, Marzena & Tóth, Árpád & Varbanov, Petar Sabev, 2024. "Strategic integration of residential electricity: An optimisation model for solar energy utilisation and carbon reduction," Energy, Elsevier, vol. 310(C).
    3. Vallati, Andrea & Di Matteo, Miriam & Lo Basso, Gianluigi & Ocłoń, Paweł & Fiorini, Costanza Vittoria, 2024. "Definition of a PVT coupled water source heat pump system through optimization of individual components," Energy, Elsevier, vol. 307(C).
    4. Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    6. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    7. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    8. Alok Dhaundiyal, 2023. "Thermo-Statistical Investigation of the Solar Air Collector Using Least Angle Regression," Energies, MDPI, vol. 16(5), pages 1-21, March.
    9. Jie, Pengfei & Jin, Xinwei & Zhang, Zhijie & Fu, Yu & Wei, Fengjun, 2025. "Impact of incentive policies on the optimal configuration and performance of biomass gas-driven combined cooling, heating and power system," Energy, Elsevier, vol. 327(C).
    10. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    11. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    12. Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).
    13. Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
    14. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    15. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    16. You, Huailiang & Zhou, Xianqi & Chen, Daifen & Xiao, Yan & Hu, Bin & Li, Guoxiang & Han, Jitian & Lysyakov, Anatoly, 2025. "Techno-economic assessment of a novel combined cooling, heating, and power (CCHP) system driven by solid oxide fuel cell and solar thermal utilization," Renewable Energy, Elsevier, vol. 240(C).
    17. Battista, Gabriele & de Lieto Vollaro, Emanuele & Ocłoń, Paweł & Vallati, Andrea, 2021. "Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand," Energy, Elsevier, vol. 226(C).
    18. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
    19. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
    20. Mi, Peiyuan & Zhang, Jili & Han, Youhua & Guo, Xiaochao, 2022. "Operation performance study and prediction of photovoltaic thermal heat pump system engineering in winter," Applied Energy, Elsevier, vol. 306(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501271x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.