IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125001740.html
   My bibliography  Save this article

Dynamic performance of photovoltaic thermal-heat pump system with connection configurations

Author

Listed:
  • Zou, Wenlong
  • Yu, Gang
  • Du, Xiaoze
  • Wu, Hongwei

Abstract

Buildings account for a significant share of global energy consumption and carbon emissions, with space heating and domestic hot water being major contributors. Photovoltaic thermal (PV/T)-heat pump system offer a promising solution by generating both electricity and thermal energy, improving overall efficiency. While existing studies focus on individual PV/T collector performance, little is known about the effects of hybrid series-parallel configurations and mass flow rates on long-term operational efficiency. This study evaluates the impact of these factors on PV/T-heat pump system performance. A dynamic model combining lumped-parameter and transient heat current method was developed for a PV/T-heat pump system. It is found that dynamic response time of collectors in series is around 25–35 min. Different collector connection modes (series, parallel, and hybrid) and mass flow rates were simulated to assess their effects on system performance, including fluid and PV cell temperatures, electrical and thermal efficiency. Results show that increasing the number of collectors in series raises fluid and PV cell temperatures, reducing efficiency. Optimal performance was achieved with hybrid series-parallel configurations (N = 2, mass flow rate 0.03–0.035 kg/(m2·s)). The system's electrical efficiency was 12.01 %, and daily power output was 19.83 kWh, with COP values of 1.8 and 2.46. Hybrid series-parallel configurations and appropriate mass flow rates enhance PV/T-heat pump system efficiency, contributing to energy savings and reduced carbon emissions. Future research should focus on real-world validation.

Suggested Citation

  • Zou, Wenlong & Yu, Gang & Du, Xiaoze & Wu, Hongwei, 2025. "Dynamic performance of photovoltaic thermal-heat pump system with connection configurations," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001740
    DOI: 10.1016/j.renene.2025.122512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    2. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    3. Zou, Wenlong & Yu, Gang & Du, Xiaoze, 2024. "Energy and exergy analysis of photovoltaic thermal collectors: Comprehensive investigation of operating parameters in different dynamic models," Renewable Energy, Elsevier, vol. 221(C).
    4. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    5. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
    6. Vallati, A. & Ocłoń, P. & Colucci, C. & Mauri, L. & de Lieto Vollaro, R. & Taler, J., 2019. "Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector," Energy, Elsevier, vol. 174(C), pages 91-96.
    7. Qu, Minglu & Yan, Xufeng & Wang, Haiyang & Hei, Yingxiao & Liu, Hongzhi & Li, Zhao, 2022. "Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater," Renewable Energy, Elsevier, vol. 194(C), pages 1084-1097.
    8. Sun, L.L. & Li, M. & Yuan, Y.P. & Cao, X.L. & Lei, B. & Yu, N.Y., 2016. "Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings," Renewable Energy, Elsevier, vol. 93(C), pages 291-301.
    9. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    11. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    12. abbas, Sajid & Yuan, Yanping & Hassan, Atazaz & Zhou, Jinzhi & Zeng, Chao & Yu, Min & Emmanuel, Bisengimana, 2022. "Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator," Energy, Elsevier, vol. 254(PB).
    13. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    14. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    15. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Ebrahimnia-Bajestan, Ehsan & Davidson, John & Bailie, David, 2020. "Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity," Renewable Energy, Elsevier, vol. 148(C), pages 558-572.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenlong & Yu, Gang & Du, Xiaoze, 2024. "Energy and exergy analysis of photovoltaic thermal collectors: Comprehensive investigation of operating parameters in different dynamic models," Renewable Energy, Elsevier, vol. 221(C).
    2. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    3. Aktekeli, Burak & Aktaş, Mustafa & Koşan, Meltem & Arslan, Erhan & Şevik, Seyfi, 2025. "Experimental study of a novel design bi-fluid based photovoltaic thermal (PVT)-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 238(C).
    4. Choi, Hwi-Ung & Choi, Kwang-Hwan, 2023. "Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater," Energy, Elsevier, vol. 285(C).
    5. Li, Sheng & Cui, Liping & Zhang, Xuejun & Dai, Zhengshu & Zhang, Changxing & Gao, Jinshuang & Zhao, Yazhou, 2025. "Simulation and experimental study on the performance of solar phase change slurry direct evaporation photovoltaic/thermal heat pump," Energy, Elsevier, vol. 324(C).
    6. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    7. Qu, Minglu & Yan, Xufeng & Wang, Haiyang & Hei, Yingxiao & Liu, Hongzhi & Li, Zhao, 2022. "Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater," Renewable Energy, Elsevier, vol. 194(C), pages 1084-1097.
    8. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    9. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    10. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    11. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    12. Vallati, A. & Ocłoń, P. & Colucci, C. & Mauri, L. & de Lieto Vollaro, R. & Taler, J., 2019. "Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector," Energy, Elsevier, vol. 174(C), pages 91-96.
    13. Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
    14. Zhao, Yang & Wang, Feng & Xu, Zipeng & Cheng, Chao & Gao, Dan & Zhang, Heng & Wang, Yuting, 2025. "Experimental and numerical investigation of spray cooling based photovoltaic/thermal system: Achieving high performance, low cost, and lightweight design," Energy, Elsevier, vol. 323(C).
    15. Sheta, Mahmoud & Hassan, Hamdy, 2023. "Performance investigation of standalone multi-effect mechanical vapor compression desalination system powered by cascade photovoltaic/thermal-photovoltaic solar field-assisted heat pump system," Renewable Energy, Elsevier, vol. 219(P2).
    16. Li, Wenjia & Hao, Yong, 2017. "Explore the performance limit of a solar PV – thermochemical power generation system," Applied Energy, Elsevier, vol. 206(C), pages 843-850.
    17. Xiang, Bo & Cao, Xiaoling & Yuan, Yanping & Hasanuzzaman, M. & Zeng, Chao & Ji, Yasheng & Sun, Liangliang, 2018. "A novel hybrid energy system combined with solar-road and soil-regenerator: Sensitivity analysis and optimization," Renewable Energy, Elsevier, vol. 129(PA), pages 419-430.
    18. Mi, Peiyuan & Zhang, Jili & Han, Youhua & Guo, Xiaochao, 2022. "Operation performance study and prediction of photovoltaic thermal heat pump system engineering in winter," Applied Energy, Elsevier, vol. 306(PB).
    19. Xiaojiao Yang & Jinzhi Zhou & Yanping Yuan, 2019. "Energy Performance of an Encapsulated Phase Change Material PV/T System," Energies, MDPI, vol. 12(20), pages 1-16, October.
    20. Pedro Orgeira-Crespo & Carlos Ulloa & José M. Núñez & José A. Pérez, 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars," Energies, MDPI, vol. 13(11), pages 1-15, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.