IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4447-d1729506.html
   My bibliography  Save this article

Bi-Level Optimization-Based Bidding Strategy for Energy Storage Using Two-Stage Stochastic Programming

Author

Listed:
  • Kui Hua

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Qingshan Xu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Lele Fang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Xin Xu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Energy storage will play an important role in the new power system with a high penetration of renewable energy due to its flexibility. Large-scale energy storage can participate in electricity market clearing, and knowing how to make more profits through bidding strategies in various types of electricity markets is crucial for encouraging its market participation. This paper considers differentiated bidding parameters for energy storage in a two-stage market with wind power integration, and transforms the market clearing process, which is represented by a two-stage bi-level model, into a single-level model using Karush–Kuhn–Tucker conditions. Nonlinear terms are addressed using binary expansion and the big-M method to facilitate the model solution. Numerical verification is conducted on the modified IEEE RTS-24 and 118-bus systems. The results show that compared to bidding as a price-taker and with marginal cost, the proposed mothod can bring a 16.73% and 13.02% increase in total market revenue, respectively. The case studies of systems with different scales verify the effectiveness and scalability of the proposed method.

Suggested Citation

  • Kui Hua & Qingshan Xu & Lele Fang & Xin Xu, 2025. "Bi-Level Optimization-Based Bidding Strategy for Energy Storage Using Two-Stage Stochastic Programming," Energies, MDPI, vol. 18(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4447-:d:1729506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    2. Abunima, Hamza & Park, Woan-Ho & Glick, Mark B. & Kim, Yun-Su, 2022. "Two-Stage stochastic optimization for operating a Renewable-Based Microgrid," Applied Energy, Elsevier, vol. 325(C).
    3. Sakti, Apurba & Botterud, Audun & O’Sullivan, Francis, 2018. "Review of wholesale markets and regulations for advanced energy storage services in the United States: Current status and path forward," Energy Policy, Elsevier, vol. 120(C), pages 569-579.
    4. Fan, Wei & Tan, Qingbo & Zhang, Amin & Ju, Liwei & Wang, Yuwei & Yin, Zhe & Li, Xudong, 2023. "A Bi-level optimization model of integrated energy system considering wind power uncertainty," Renewable Energy, Elsevier, vol. 202(C), pages 973-991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    2. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    3. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    4. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    5. Melendez, Kevin A. & Matamala, Yolanda, 2025. "Adversarial attacks in demand-side electricity markets," Applied Energy, Elsevier, vol. 377(PD).
    6. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    7. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    8. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    9. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    10. Valencia-Díaz, Alejandro & Toro, Eliana M. & Hincapié, Ricardo A., 2025. "Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities," Applied Energy, Elsevier, vol. 377(PB).
    11. Zhang, Ziqi & Li, Peng & Ji, Haoran & Zhao, Jinli & Xi, Wei & Wu, Jianzhong & Wang, Chengshan, 2024. "Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short," Applied Energy, Elsevier, vol. 372(C).
    12. Dongwei Zhao & Mehdi Jafari & Audun Botterud & Apurba Sakti, 2022. "Strategic Storage Investment in Electricity Markets," Papers 2201.02290, arXiv.org, revised Mar 2022.
    13. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    14. Amigo, Pía & Cea-Echenique, Sebastián & Feijoo, Felipe, 2021. "A two stage cap-and-trade model with allowance re-trading and capacity investment: The case of the Chilean NDC targets," Energy, Elsevier, vol. 224(C).
    15. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    16. Li, Xiaoyuan & Tian, Zhe & Feng, Wei & Zhen, Cheng & Lu, Yakai & Niu, Jide, 2025. "Stochastic peak shaving scenario generation for grid-friendly building energy system design," Energy, Elsevier, vol. 324(C).
    17. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    18. Leprince, Julien & Schledorn, Amos & Guericke, Daniela & Dominkovic, Dominik Franjo & Madsen, Henrik & Zeiler, Wim, 2023. "Can occupant behaviors affect urban energy planning? Distributed stochastic optimization for energy communities," Applied Energy, Elsevier, vol. 348(C).
    19. Huang, Shanshan & Ye, Ze & Huang, Yunxiang, 2025. "Capacity tariff mechanism design for grid-side energy storage in China: A Stackelberg game approach," Utilities Policy, Elsevier, vol. 95(C).
    20. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4447-:d:1729506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.