IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4443-d1729111.html
   My bibliography  Save this article

Optimization of Rear-Side Energy Contribution in Bifacial PV Panels: A Parametric Analysis on Albedo, Tilt, Height, and Mounting Configuration

Author

Listed:
  • Furkan Dincer

    (Department of Electrical and Electronics Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras 46050, Türkiye)

  • Emre Ozer

    (Gaziantep Islam Science and Technology University, Gaziantep 27260, Türkiye)

Abstract

Bifacial photovoltaic panels are preferred over monofacial panels due to the ability of their back surfaces to absorb radiation and generate electricity. However, optimizing the rear-side energy contribution remains a critical area of research. This study systematically investigates how four key parameters (albedo, tilt angle, panel height, and mounting configuration) affect rear-side energy generation and overall panel efficiency. In the first scenario, the impact of surface reflectivity was evaluated. High-reflectivity materials such as aluminum (21.2%) and fresh snow (20.5%) significantly increased rear-side energy yield. The second scenario examined tilt angle, showing that increasing the tilt up to 50° enhanced back-side generation, reaching a gain of 5.5%. The third scenario focused on the effect of panel height, revealing a linear relationship with energy generation. The fourth assessed orientation, comparing horizontal and vertical installations. Horizontal mounting provided a higher rear-side energy yield (4.5%) due to increased exposure to ground-reflected radiation. The findings of this study provide important information for the optimization of bifacial photovoltaic panels and the information will provide guidance for easier and more efficient installation of solar power plants.

Suggested Citation

  • Furkan Dincer & Emre Ozer, 2025. "Optimization of Rear-Side Energy Contribution in Bifacial PV Panels: A Parametric Analysis on Albedo, Tilt, Height, and Mounting Configuration," Energies, MDPI, vol. 18(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4443-:d:1729111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domínguez, R. & Carrión, M. & Oggioni, G., 2020. "Planning and operating a renewable-dominated European power system under uncertainty," Applied Energy, Elsevier, vol. 258(C).
    2. Baloch, Ahmer A.B. & Hammat, Said & Figgis, Benjamin & Alharbi, Fahhad H. & Tabet, Nouar, 2020. "In-field characterization of key performance parameters for bifacial photovoltaic installation in a desert climate," Renewable Energy, Elsevier, vol. 159(C), pages 50-63.
    3. Ganesan, K. & Winston, D. Prince & Sugumar, S. & Prasath, T. Hari, 2024. "Performance investigation of n-type PERT bifacial solar photovoltaic module installed at different elevations," Renewable Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dias, Douglas Lamas & Rampinelli, Giuliano Arns & Garrido, Gustavo Nofuentes & Tejero, Jorge Aguilera & Cardona Ortín, Mariano Sidrach de & Bremermann, Leonardo Elizeire, 2025. "Performance assessment of bifacial and monofacial PV systems on different types of soils in a low-latitude site," Renewable Energy, Elsevier, vol. 246(C).
    2. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    3. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    4. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    5. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    6. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    7. Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
    8. repec:cte:wsrepe:38369 is not listed on IDEAS
    9. Junjie Ye & Yinghui Liu & Li Sun & Ke Chen, 2025. "Combined Scheduling and Configuration Optimization of Power-to-Methanol System Considering Feedback Control of Thermal Power," Energies, MDPI, vol. 18(5), pages 1-20, March.
    10. Cormos, Calin-Cristian & Dinca, Cristian, 2021. "Techno-economic and environmental implications of decarbonization process applied for Romanian fossil-based power generation sector," Energy, Elsevier, vol. 220(C).
    11. Michelle Kitayama da Silva & Mehreen Saleem Gul & Hassam Chaudhry, 2021. "Review on the Sources of Power Loss in Monofacial and Bifacial Photovoltaic Technologies," Energies, MDPI, vol. 14(23), pages 1-29, November.
    12. Rodrigo, Pedro M. & Mouhib, Elmehdi & Fernandez, Eduardo F. & Almonacid, Florencia & Rosas-Caro, Julio C., 2024. "Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
    14. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    15. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    16. Domínguez, Ruth & Carrión, Miguel & Vitali, Sebastiano, 2024. "Investments in transmission lines and storage units considering second-order stochastic dominance constraints," Energy Economics, Elsevier, vol. 134(C).
    17. Tina, Giuseppe Marco & Bontempo Scavo, Fausto & Merlo, Leonardo & Bizzarri, Fabrizio, 2021. "Analysis of water environment on the performances of floating photovoltaic plants," Renewable Energy, Elsevier, vol. 175(C), pages 281-295.
    18. Hayibo, Koami Soulemane & Petsiuk, Aliaksei & Mayville, Pierce & Brown, Laura & Pearce, Joshua M., 2022. "Monofacial vs bifacial solar photovoltaic systems in snowy environments," Renewable Energy, Elsevier, vol. 193(C), pages 657-668.
    19. Prasad, Manendra & Prasad, Ramendra, 2023. "Bifacial vs monofacial grid-connected solar photovoltaic for small islands: A case study of Fiji," Renewable Energy, Elsevier, vol. 203(C), pages 686-702.
    20. Domínguez, Ruth & Vitali, Sebastiano & Carrión, Miguel & Moriggia, Vittorio, 2021. "Analysing decarbonizing strategies in the European power system applying stochastic dominance constraints," Energy Economics, Elsevier, vol. 101(C).
    21. Zhou, Yuzhou & Zhai, Qiaozhu & Yuan, Wei & Wu, Jiang, 2021. "Capacity expansion planning for wind power and energy storage considering hourly robust transmission constrained unit commitment," Applied Energy, Elsevier, vol. 302(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4443-:d:1729111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.