IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4440-d1729010.html
   My bibliography  Save this article

Interactive Optimization of Electric Bus Scheduling and Overnight Charging

Author

Listed:
  • Zvonimir Dabčević

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Joško Deur

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

Abstract

The transition to fully electric bus (EB) fleets introduces new challenges in coordinating daily operations and managing charging energy needs, while accounting for infrastructure constraints. The paper proposes a three-stage optimization framework that integrates EB scheduling with overnight charging under realistic depot layout constraints. In the first stage, a mixed-integer linear program (MILP) determines the minimum number of EBs with ample batteries and related schedules to complete all timetabled trips. With the fleet size fixed, the second stage minimizes the EB battery capacity by optimizing trip assignments. In the third stage, charging schedules are iteratively optimized for different numbers of chargers to minimize charger power capacity and charging cost, while ensuring each EB is fully recharged before its first trip on the following day. The matrix-shape depot layout imposes spatial and operational constraints that restrict the charging and movement of EBs based on their parking positions, with EBs remaining stationary overnight. The entire process is repeated by incrementing the fleet size until a saturation point is reached, beyond which no further reduction in battery capacity is observed. This results in a Pareto frontier showing trade-offs between required battery capacity, number of chargers, charger power capacity, and charging cost. The proposed method is applied to a real-world airport parking shuttle service, demonstrating its potential to reduce the battery size and charging infrastructure demands while maintaining full operational feasibility.

Suggested Citation

  • Zvonimir Dabčević & Joško Deur, 2025. "Interactive Optimization of Electric Bus Scheduling and Overnight Charging," Energies, MDPI, vol. 18(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4440-:d:1729010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4440/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4440-:d:1729010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.