IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4221-d1720502.html
   My bibliography  Save this article

Strategic Assessment of Building-Integrated Photovoltaics Adoption: A Combined SWOT-AHP Approach

Author

Listed:
  • Mladen Bošnjaković

    (Technical Department, University of Slavonski Brod, Ulica 108. Brigade ZNG 36, 35000 Slavonski Brod, Croatia)

  • Robert Santa

    (Department of Mechanical Engineering and Material Sciences, Institute of Engineering Sciences, University of Dunaújváros, Táncsics Mihály 1/A, 2400 Dunaújváros, Hungary
    Aziz Sanjar Food Safety Laboratory, Azerbaijan State University of Economics (UNEC), 6, Istiglaliyyat Str., Baku AZ1001, Azerbaijan)

Abstract

The integration of renewable energy technologies into the building sector is critical for achieving climate and energy targets, particularly within the framework of the European Union’s decarbonization policies. Building-integrated photovoltaics (BIPV) offer a promising solution by enabling the dual function of building envelope components and on-site electricity generation. However, the widespread adoption of BIPV faces significant barriers, including high initial investment costs, design and integration complexity, fragmented standardisation and a shortage of skilled labour. This study systematically identifies, evaluates and prioritises the key factors influencing the implementation of BIPV technologies using a hybrid SWOT (strengths, weaknesses, opportunities, threats) and Analytic Hierarchy Process (AHP) methodology. A comprehensive literature review and a modified Delphi method involving expert input were employed to select and rank the most relevant factors in each SWOT category. The results indicate that external factors—particularly regulatory requirements for energy efficiency, renewable energy adoption and financial incentives—are the most significant drivers for BIPV deployment. Conversely, competition from building-attached photovoltaics (BAPV), high investment costs and the complexity of integration represent the main barriers and threats, compounded by internal weaknesses such as a lack of qualified workforce and fragmented standardisation. The findings underscore the importance of targeted regulatory and financial support, standardisation and workforce development to accelerate BIPV adoption. This research provides a structured decision-making framework for policymakers and stakeholders, supporting strategic planning for the integration of BIPV in the construction sector and contributing to the transition towards sustainable urban energy systems.

Suggested Citation

  • Mladen Bošnjaković & Robert Santa, 2025. "Strategic Assessment of Building-Integrated Photovoltaics Adoption: A Combined SWOT-AHP Approach," Energies, MDPI, vol. 18(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4221-:d:1720502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    2. Dioba, Albina & Giannakopoulou, Amalia & Struthers, David & Stamos, Angelos & Dewitte, Siegfried & Fróes, Isabel, 2024. "Identifying key barriers to joining an energy community using AHP," Energy, Elsevier, vol. 299(C).
    3. Jana Stofkova & Matej Krejnus & Katarina Repkova Stofkova & Peter Malega & Vladimira Binasova, 2022. "Use of the Analytic Hierarchy Process and Selected Methods in the Managerial Decision-Making Process in the Context of Sustainable Development," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    4. Sun, Yanyi & Liu, Dingming & Flor, Jan-Frederik & Shank, Katie & Baig, Hasan & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Mallick, Tapas K. & Wu, Yupeng, 2020. "Analysis of the daylight performance of window integrated photovoltaics systems," Renewable Energy, Elsevier, vol. 145(C), pages 153-163.
    5. Parascanu, Maria Magdalena & Keiner, Dominik & Breyer, Christian & Macé, Philippe & Lizasoain-Arteaga, Esther, 2025. "Comprehensive prospective environmental assessment of innovative photovoltaic technologies: Integration into electricity grids in Finland, Germany, and Spain," Energy, Elsevier, vol. 315(C).
    6. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    7. Jung-Fa Tsai & Sheng-Che Wu & Pajaree Kathinthong & Thu-Hien Tran & Ming-Hua Lin, 2024. "Electric Vehicle Adoption Barriers in Thailand," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    8. Tan, Yutong & Peng, Jinqing & Luo, Zhengyi & Ma, Tao, 2025. "Partitioned optimal design of semi-transparent PV curtain wall: Strike a balance among occupants’ comfort, energy conservation, and power generation," Energy, Elsevier, vol. 320(C).
    9. repec:eco:journ2:2017-04-16 is not listed on IDEAS
    10. Alessandra Scognamiglio, 2021. "A Trans-Disciplinary Vocabulary for Assessing the Visual Performance of BIPV," Sustainability, MDPI, vol. 13(10), pages 1-38, May.
    11. Ruan, Dawei & Fan, Cheng & Hu, Mingwei & Li, Yumin & Guan, Jun, 2025. "Building-integrated photovoltaics through multi-physics synergies: A critical review of optical, thermal, and electrical models in facade applications," Renewable Energy, Elsevier, vol. 251(C).
    12. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    3. Hassan Gholami & Harald Nils Røstvik, 2021. "Dataset for the Solar Incident Radiation and Electricity Production BIPV/BAPV System on the Northern/Southern Façade in Dense Urban Areas," Data, MDPI, vol. 6(6), pages 1-15, May.
    4. Hassan Gholami, 2024. "A Holistic Multi-Criteria Assessment of Solar Energy Utilization on Urban Surfaces," Energies, MDPI, vol. 17(21), pages 1-35, October.
    5. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    6. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    7. Rui Liang & Xichuan Zheng & Po-Hsun Wang & Jia Liang & Linhui Hu, 2023. "Research Progress of Carbon-Neutral Design for Buildings," Energies, MDPI, vol. 16(16), pages 1-50, August.
    8. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    9. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    10. Samuel Amo Awuku & Firdaus Muhammad-Sukki & Nazmi Sellami, 2022. "Building Integrated Photovoltaics—The Journey So Far and Future," Energies, MDPI, vol. 15(5), pages 1-5, February.
    11. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastián & Ardila Cruz, Sebastian & Osorio-Gómez, Gilberto, 2025. "Key aspects and challenges for successful energy communities: A comparative analysis between Latin America and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    12. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    13. Renhua Liu & Wentao Duan & Guoqing He & Qikun Wang, 2025. "Development of Wall-Integrated Solar Energy Technologies," Energies, MDPI, vol. 18(4), pages 1-35, February.
    14. Natalia Pawlik & Barbara Szpikowska-Sroka & Artur Miros & Bronisław Psiuk & Agnieszka Ślosarczyk, 2023. "Effect of Drying Control Agent on Physicochemical and Thermal Properties of Silica Aerogel Derived via Ambient Pressure Drying Process," Energies, MDPI, vol. 16(17), pages 1-16, August.
    15. Hassan Gholami & Harald Nils Røstvik, 2021. "The Effect of Climate on the Solar Radiation Components on Building Skins and Building Integrated Photovoltaics (BIPV) Materials," Energies, MDPI, vol. 14(7), pages 1-15, March.
    16. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    17. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    18. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    19. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    20. Pantitcha Thanatrakolsri & Duanpen Sirithian, 2025. "Toward Low-Carbon Mobility: Greenhouse Gas Emissions and Reduction Opportunities in Thailand’s Road Transport Sector," Clean Technol., MDPI, vol. 7(3), pages 1-34, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4221-:d:1720502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.