IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4192-d1719517.html
   My bibliography  Save this article

Ultra-Short-Term Photovoltaic Power Prediction Based on Predictable Component Reconstruction and Spatiotemporal Heterogeneous Graph Neural Networks

Author

Listed:
  • Yingjie Liu

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China
    School of Computer Science, Baicheng Normal University, Baicheng 137099, China)

  • Mao Yang

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China)

Abstract

Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this paper, we propose a combined prediction framework that takes into account the reconfiguration of the predictable components of PV stations and the spatiotemporal heterogeneous maps. A circuit singular spectral decomposition (CISSD) intrinsic predictable component extraction method is adopted to obtain specific frequency components in sensitive meteorological variables, a mechanism based on radiation characteristics and PV power trend predictable component extraction and reconstruction is proposed to enhance power predictability, and a spatiotemporal heterogeneous graph neural network (STHGNN) combined with a Non-stationary Transformer (Ns-Transformer) combination architecture to achieve joint prediction for different PV components. The proposed method is applied to a PV power plant in Gansu, China, and the results show that the prediction method based on the proposed combined spatio-temporal heterogeneous graph neural network model combined with the proposed predictable component extraction achieves an average reduction of 6.50% in the RMSE, an average reduction of 2.50% in the MAE, and an average improvement of 11.93% in the R 2 over the direct prediction method, respectively.

Suggested Citation

  • Yingjie Liu & Mao Yang, 2025. "Ultra-Short-Term Photovoltaic Power Prediction Based on Predictable Component Reconstruction and Spatiotemporal Heterogeneous Graph Neural Networks," Energies, MDPI, vol. 18(15), pages 1-30, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4192-:d:1719517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Mao & Guo, Yunfeng & Huang, Tao & Zhang, Wei, 2025. "Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios," Applied Energy, Elsevier, vol. 377(PD).
    2. Nantian Huang & Ruiqing Li & Lin Lin & Zhiyong Yu & Guowei Cai, 2018. "Low Redundancy Feature Selection of Short Term Solar Irradiance Prediction Using Conditional Mutual Information and Gauss Process Regression," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    3. Chen, Jie & Peng, Tian & Qian, Shijie & Ge, Yida & Wang, Zheng & Nazir, Muhammad Shahzad & Zhang, Chu, 2025. "An error-corrected deep Autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction," Applied Energy, Elsevier, vol. 377(PD).
    4. Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
    5. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    6. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    7. Zhou, Heng & Zheng, Peijun & Dong, Jiuqing & Liu, Jiang & Nakanishi, Yosuke, 2024. "Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data," Applied Energy, Elsevier, vol. 376(PA).
    8. Jackson, Nicole D. & Gunda, Thushara, 2021. "Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States," Applied Energy, Elsevier, vol. 302(C).
    9. Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
    10. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    11. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Hui Wang & Jianbo Sun & Weijun Wang, 2018. "Photovoltaic Power Forecasting Based on EEMD and a Variable-Weight Combination Forecasting Model," Sustainability, MDPI, vol. 10(8), pages 1-11, July.
    13. Zhang, Mingyue & Han, Yang & Wang, Chaoyang & Yang, Ping & Wang, Congling & Zalhaf, Amr S., 2024. "Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data," Applied Energy, Elsevier, vol. 375(C).
    14. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    15. Yang, Mao & Guo, Yunfeng & Huang, Tao & Fan, Fulin & Ma, Chenglian & Fang, Guozhong, 2024. "Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods," Energy, Elsevier, vol. 312(C).
    16. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    17. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zongbin & Huang, Xiaoqiao & Li, Chengli & Cheng, Feiyan & Tai, Yonghang, 2025. "CRAformer: A cross-residual attention transformer for solar irradiation multistep forecasting," Energy, Elsevier, vol. 320(C).
    2. Wang, Jujie & Jiang, Weiyi & Shu, Shuqin & He, Xuecheng, 2025. "A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer," Energy, Elsevier, vol. 320(C).
    3. Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2025. "A correction framework for day-ahead NWP solar irradiance forecast based on sparsely activated multivariate-shapelets information aggregation," Renewable Energy, Elsevier, vol. 244(C).
    4. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    5. Qu, Zhijian & Hou, Xinxing & Huang, ShiXun & Li, Di & He, Yang & Meng, Yan, 2025. "Probabilistic power forecasting for wind farm clusters using Moran-Graph network with posterior feedback attention mechanism," Energy, Elsevier, vol. 328(C).
    6. Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
    7. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    8. Shengli Wang & Xiaolong Guo & Tianle Sun & Lihui Xu & Jinfeng Zhu & Zhicai Li & Jinjiang Zhang, 2025. "Short-Term Photovoltaic Power Forecasting Based on the VMD-IDBO-DHKELM Model," Energies, MDPI, vol. 18(2), pages 1-17, January.
    9. Zhong, Mingwei & Fan, Jingmin & Luo, Jianqiang & Xiao, Xuanyi & He, Guanglin & Cai, Rui, 2024. "InfoCAVB-MemoryFormer: Forecasting of wind and photovoltaic power through the interaction of data reconstruction and data augmentation," Applied Energy, Elsevier, vol. 371(C).
    10. Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
    11. Zhang, Mingyue & Han, Yang & Wang, Chaoyang & Yang, Ping & Wang, Congling & Zalhaf, Amr S., 2024. "Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data," Applied Energy, Elsevier, vol. 375(C).
    12. Yang, Mao & Guo, Yunfeng & Huang, Tao & Zhang, Wei, 2025. "Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios," Applied Energy, Elsevier, vol. 377(PD).
    13. Chen, Jie & Peng, Tian & Qian, Shijie & Ge, Yida & Wang, Zheng & Nazir, Muhammad Shahzad & Zhang, Chu, 2025. "An error-corrected deep Autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction," Applied Energy, Elsevier, vol. 377(PD).
    14. Tian, Zhirui & Chen, Yujie & Wang, Guangyu, 2025. "Enhancing PV power forecasting accuracy through nonlinear weather correction based on multi-task learning," Applied Energy, Elsevier, vol. 386(C).
    15. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    16. Zhai, Chao & He, Xinyi & Cao, Zhixiang & Abdou-Tankari, Mahamadou & Wang, Yi & Zhang, Minghao, 2025. "Photovoltaic power forecasting based on VMD-SSA-Transformer: Multidimensional analysis of dataset length, weather mutation and forecast accuracy," Energy, Elsevier, vol. 324(C).
    17. Yong-gang Zhang & Junbo Qiu & Yan Zhang & Yongyao Wei, 2021. "The adoption of ELM to the prediction of soil liquefaction based on CPT," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 539-549, May.
    18. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    19. Yu, Sheng & He, Bin & Fang, Lei, 2025. "Multi-step short-term forecasting of photovoltaic power utilizing TimesNet with enhanced feature extraction and a novel loss function," Applied Energy, Elsevier, vol. 388(C).
    20. Zhuo Guo & Yuanyuan Chang & Yanhong Fang, 2025. "Fault Diagnosis of Photovoltaic Array Based on Improved Honey Badger Optimization Algorithm," Energies, MDPI, vol. 18(4), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4192-:d:1719517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.