IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2889-d163808.html
   My bibliography  Save this article

Low Redundancy Feature Selection of Short Term Solar Irradiance Prediction Using Conditional Mutual Information and Gauss Process Regression

Author

Listed:
  • Nantian Huang

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Ruiqing Li

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Lin Lin

    (College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China)

  • Zhiyong Yu

    (Economic Research Institute, State Grid Xinjiang Electric Power limited company, Urumchi 830000, China)

  • Guowei Cai

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

Solar irradiation is influenced by many meteorological features, which results in a complex structure meaning its prediction has low efficiency and accuracy. The existing prediction methods are focused on analyzing the correlation between features and irradiation to reduce model complexity but they do not account for redundant analysis in feature subset. In order to reduce the information redundancy in the feature set and improve prediction accuracy, a novel feature selection method for short-term irradiation prediction based on Conditional Mutual Information (CMI) and Gaussian Process Regression (GPR) is proposed. Firstly, the CMI values of different features are calculated to evaluate correlation and redundant information between features in the feature subsets. Secondly, GPR with a stable prediction performance and adaptively determined hyper parameters is used as the predictor. The optimal feature subset and the GPR covariance function can be selected using Sequential Forward Selection (SFS). Finally, an optimal predictor is determined by the minimum prediction error and the prediction of solar irradiation is carried out by the determined predictor. The experimental results show that CMI-GPR AEK has the highest prediction accuracy with the optimal feature set has low dimension, which is 4.33% lower in MAPE than the predictor without feature selection, although both of them have an optimal kernel function. The CMI-GPR AEK is less complicated for the predictor and there is less redundancy between features in the model with the dimension of the optimal feature set is only 14.

Suggested Citation

  • Nantian Huang & Ruiqing Li & Lin Lin & Zhiyong Yu & Guowei Cai, 2018. "Low Redundancy Feature Selection of Short Term Solar Irradiance Prediction Using Conditional Mutual Information and Gauss Process Regression," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2889-:d:163808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    2. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    3. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gniewko Niedbała, 2019. "Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed," Sustainability, MDPI, vol. 11(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    2. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    3. Tingting Zhu & Yuanzhe Li & Zhenye Li & Yiren Guo & Chao Ni, 2022. "Inter-Hour Forecast of Solar Radiation Based on Long Short-Term Memory with Attention Mechanism and Genetic Algorithm," Energies, MDPI, vol. 15(3), pages 1-14, January.
    4. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    5. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    7. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    9. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    10. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    11. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    13. Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
    14. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    15. Pappa, Areti & Theodoropoulos, Ioannis & Galmarini, Stefano & Kioutsioukis, Ioannis, 2023. "Analog versus multi-model ensemble forecasting: A comparison for renewable energy resources," Renewable Energy, Elsevier, vol. 205(C), pages 563-573.
    16. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    17. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    18. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    19. Kwak, Younghoon & Mun, Sun-Hye & Park, Chang-Dae & Lee, Sang-Moon & Huh, Jung-Ho, 2022. "Statistical analysis of power generation of semi-transparent photovoltaic (STPV) for diversity in building envelope design: A mock-up test by azimuth and tilt angles," Renewable Energy, Elsevier, vol. 188(C), pages 651-669.
    20. Hyung Keun Ahn & Neungsoo Park, 2021. "Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors," Energies, MDPI, vol. 14(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2889-:d:163808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.