IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4038-d1712733.html
   My bibliography  Save this article

Modeling Biomass Conversion in Raceway Zone of Blast Furnace Using Resolved Lagrangian Particle Model

Author

Listed:
  • Matthias Kiss

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
    K1-MET GmbH, Stahlstrasse 14, BG 88, 4020 Linz, Austria)

  • Christine Gruber

    (K1-MET GmbH, Stahlstrasse 14, BG 88, 4020 Linz, Austria)

  • Michael Harasek

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Markus Bösenhofer

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

Abstract

This study numerically investigates the suitability of biomass particles of varying diameters as alternative reducing agents in the blast furnace raceway zone, where harsh conditions can create internal gradients affecting conversion. An internally resolved 1D Lagrangian particle model, fully integrated into the open-source CFD toolbox OpenFOAM ® , is used to model temperature and species gradients within thermally thick particles. The particle model is coupled with the surrounding Eulerian phase and includes drying, pyrolysis, oxidation, and gasification submodels. Results show that only biomass particles smaller than 250 μm fully convert in the raceway, while larger particles carry unconverted material beyond, potentially reducing blast furnace efficiency.

Suggested Citation

  • Matthias Kiss & Christine Gruber & Michael Harasek & Markus Bösenhofer, 2025. "Modeling Biomass Conversion in Raceway Zone of Blast Furnace Using Resolved Lagrangian Particle Model," Energies, MDPI, vol. 18(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4038-:d:1712733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nugraha, Maulana G. & Saptoadi, Harwin & Hidayat, Muslikhin & Andersson, Bengt & Andersson, Ronnie, 2019. "Particle modelling in biomass combustion using orthogonal collocation," Applied Energy, Elsevier, vol. 255(C).
    2. Serge Roudier & Luis Delgado Sancho & Rainer Remus & Miguel Aguado-Monsonet, 2013. "Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control," JRC Research Reports JRC69967, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbora Švédová & Helena Raclavská & Marek Kucbel & Jana Růžičková & Konstantin Raclavský & Miroslav Koliba & Dagmar Juchelková, 2020. "Concentration Variability of Water-Soluble Ions during the Acceptable and Exceeded Pollution in an Industrial Region," IJERPH, MDPI, vol. 17(10), pages 1-26, May.
    2. Mahjouri, Maryam & Ishak, Mohd Bakri & Torabian, Ali & Manaf, Latifah Abd & Halimoon, Normala, 2017. "Determining the best practicable control technology and its associated emission levels for Iron and Steel industry in Iran," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 114-123.
    3. Stover, Luke & Caillol, Christian & Piriou, Bruno & Mayer-Laigle, Claire & Rouau, Xavier & Vaïtilingom, Gilles, 2023. "A phenomenological description of biomass powder combustion in internal combustion engines," Energy, Elsevier, vol. 274(C).
    4. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    5. Krawczyk, Piotr & Kurkus-Gruszecka, Michalina & Wilczyński, Marcin & Dzido, Aleksandra, 2025. "Numerical analysis of design and operational parameters of low power pellet burners," Renewable Energy, Elsevier, vol. 243(C).
    6. Harvey, L.D. Danny, 2021. "Iron and steel recycling: Review, conceptual model, irreducible mining requirements, and energy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Rikard Edland & Fredrik Normann & Thomas Allgurén & Christian Fredriksson & Klas Andersson, 2019. "Scaling of Pulverized-Fuel Jet Flames That Apply Large Amounts of Excess Air—Implications for NO x Formation," Energies, MDPI, vol. 12(14), pages 1-18, July.
    8. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    9. Hannu Suopajärvi & Antti Salo & Timo Paananen & Riku Mattila & Timo Fabritius, 2013. "Recycling of Coking Plant Residues in a Finnish Steelworks—Laboratory Study and Replacement Ratio Calculation," Resources, MDPI, vol. 2(2), pages 1-15, May.
    10. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    11. Ludwik Kosyrczyk & Slawomir Stelmach & Krzysztof Gaska & Agnieszka Generowicz & Natalia Iwaszczuk & Dariusz Kardaś, 2021. "Optimization of Thermal Parameters of the Coke Oven Battery by Modified Methodology of Temperature Measurement in Heating Flues as the Management Tool in the Cokemaking Industry," Energies, MDPI, vol. 14(4), pages 1-13, February.
    12. Maulana G. Nugraha & Harwin Saptoadi & Muslikhin Hidayat & Bengt Andersson & Ronnie Andersson, 2021. "Particulate Matter Reduction in Residual Biomass Combustion," Energies, MDPI, vol. 14(11), pages 1-23, June.
    13. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Sébastien Pissot & Henrik Thunman & Peter Samuelsson & Martin Seemann, 2021. "Production of Negative-Emissions Steel Using a Reducing Gas Derived from DFB Gasification," Energies, MDPI, vol. 14(16), pages 1-32, August.
    15. Julian Suer & Marzia Traverso & Nils Jäger, 2022. "Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    16. Sandberg, Erik & Toffolo, Andrea & Krook-Riekkola, Anna, 2019. "A bottom-up study of biomass and electricity use in a fossil free Swedish industry," Energy, Elsevier, vol. 167(C), pages 1019-1030.
    17. Andrade, Carlos & Desport, Lucas & Selosse, Sandrine, 2024. "Net-negative emission opportunities for the iron and steel industry on a global scale," Applied Energy, Elsevier, vol. 358(C).
    18. Lobato, Natália Cristina Candian & Villegas, Edwin Auza & Mansur, Marcelo Borges, 2015. "Management of solid wastes from steelmaking and galvanizing processes: A brief review," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 49-57.
    19. Teresa Annunziata Branca & Barbara Fornai & Valentina Colla & Maria Ilaria Pistelli & Eros Luciano Faraci & Filippo Cirilli & Antonius Johannes Schröder, 2021. "Industrial Symbiosis and Energy Efficiency in European Process Industries: A Review," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    20. Gu, Tianbao & Ma, Wenchao & Berning, Torsten & Guo, Zhenning & Andersson, Ronnie & Yin, Chungen, 2022. "Advanced simulation of a 750 t/d municipal solid waste grate boiler to better accommodate feedstock changes due to waste classification," Energy, Elsevier, vol. 254(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4038-:d:1712733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.