Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
- Alexander Otto & Martin Robinius & Thomas Grube & Sebastian Schiebahn & Aaron Praktiknjo & Detlef Stolten, 2017. "Power-to-Steel: Reducing CO 2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry," Energies, MDPI, vol. 10(4), pages 1-21, April.
- Pietro A. Renzulli & Bruno Notarnicola & Giuseppe Tassielli & Gabriella Arcese & Rosa Di Capua, 2016. "Life Cycle Assessment of Steel Produced in an Italian Integrated Steel Mill," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
- Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
- Schmitz, N. & Sankowski, L. & Kaiser, F. & Schwotzer, C. & Echterhof, T. & Pfeifer, H., 2021. "Towards CO2-neutral process heat generation for continuous reheating furnaces in steel hot rolling mills – A case study," Energy, Elsevier, vol. 224(C).
- Serge Roudier & Luis Delgado Sancho & Rainer Remus & Miguel Aguado-Monsonet, 2013. "Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control," JRC Research Reports JRC69967, Joint Research Centre.
- Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
- Kirschen, Marcus & Badr, Karim & Pfeifer, Herbert, 2011. "Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry," Energy, Elsevier, vol. 36(10), pages 6146-6155.
- Jana Gerta Backes & Julian Suer & Nils Pauliks & Sabrina Neugebauer & Marzia Traverso, 2021. "Life Cycle Assessment of an Integrated Steel Mill Using Primary Manufacturing Data: Actual Environmental Profile," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
- Barati, Mansoor, 2010. "Energy intensity and greenhouse gases footprint of metallurgical processes: A continuous steelmaking case study," Energy, Elsevier, vol. 35(9), pages 3731-3737.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Julian Suer & Marzia Traverso & Nils Jäger, 2022. "Carbon Footprint Assessment of Hydrogen and Steel," Energies, MDPI, vol. 15(24), pages 1-20, December.
- Matthias Schlipf & Bastian Striegl & Tobias Gaugler, 2024. "Climate true‐cost analysis of industrial goods and its regulatory implications on value chains and global competition," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 589-602, June.
- Bożena Gajdzik & Radosław Wolniak & Wiesław Grebski, 2025. "An Econometric Analysis of CO 2 Emission Intensity in Poland’s Blast Furnace–Basic Oxygen Furnace Steelmaking Process," Sustainability, MDPI, vol. 17(9), pages 1-30, April.
- Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
- Alessandro Cardarelli & Marco Barbanera, 2023. "Substitution of Fossil Coal with Hydrochar from Agricultural Waste in the Electric Arc Furnace Steel Industry: A Comprehensive Life Cycle Analysis," Energies, MDPI, vol. 16(15), pages 1-19, July.
- Mohammad Meysami & Alex Meisami & Mohammad Merhi & Hassan Dehghanpour & Amirhossein Meysami, 2025. "Predicting CO 2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization," Sustainability, MDPI, vol. 17(13), pages 1-15, June.
- Sachi Furukawa & Ryohei Iwami & Yoshihiro Kimura, 2025. "Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Compon," Sustainability, MDPI, vol. 17(5), pages 1-29, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Preis, Philipp, 2023. "Turning German Steel Production Green: Quantifying Diffusion Scenarios for Hydrogen-Based Steelmaking and Policy Implications," Junior Management Science (JUMS), Junior Management Science e. V., vol. 8(3), pages 682-716.
- Sébastien Pissot & Henrik Thunman & Peter Samuelsson & Martin Seemann, 2021. "Production of Negative-Emissions Steel Using a Reducing Gas Derived from DFB Gasification," Energies, MDPI, vol. 14(16), pages 1-32, August.
- Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
- Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
- Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
- Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
- Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
- Alla Toktarova & Ida Karlsson & Johan Rootzén & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2020. "Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study," Energies, MDPI, vol. 13(15), pages 1-18, July.
- Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
- Johnsson, Simon & Andrei, Mariana & Johansson, Maria, 2025. "Harmonizing energy audit reporting: Addressing data loss and policy challenges in the EU member states," Energy, Elsevier, vol. 319(C).
- Andrade, Carlos & Desport, Lucas & Selosse, Sandrine, 2024. "Net-negative emission opportunities for the iron and steel industry on a global scale," Applied Energy, Elsevier, vol. 358(C).
- Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
- Zhang, Yujie & Yue, Qiang & Wang, Huanyu & Wang, Heming & Du, Tao & Wang, Qi & Ji, Wei, 2025. "Analysis of carbon emission and energy consumption transfer characteristics of China's iron and steel industry," Energy, Elsevier, vol. 318(C).
- Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
- Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
- Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
- Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
- Weiss, Robert & Ikäheimo, Jussi, 2024. "Flexible industrial power-to-X production enabling large-scale wind power integration: A case study of future hydrogen direct reduction iron production in Finland," Applied Energy, Elsevier, vol. 365(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14131-:d:957203. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14131-d957203.html