IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4021-d1712002.html
   My bibliography  Save this article

Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal

Author

Listed:
  • Marco Bassani

    (Department of Phisics, University of Milan, Via Giovanni Celoria, 16, 20133 Milano, Italy)

  • Andrea Toscani

    (Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 59, 43124 Parma, Italy)

  • Carlo Concari

    (Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 59, 43124 Parma, Italy)

Abstract

The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3 k W -class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact.

Suggested Citation

  • Marco Bassani & Andrea Toscani & Carlo Concari, 2025. "Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal," Energies, MDPI, vol. 18(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4021-:d:1712002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antti Lajunen & Panu Sainio & Lasse Laurila & Jenni Pippuri-Mäkeläinen & Kari Tammi, 2018. "Overview of Powertrain Electrification and Future Scenarios for Non-Road Mobile Machinery," Energies, MDPI, vol. 11(5), pages 1-22, May.
    2. Bowen Zhang & Zaixin Song & Senyi Liu & Rundong Huang & Chunhua Liu, 2022. "Overview of Integrated Electric Motor Drives: Opportunities and Challenges," Energies, MDPI, vol. 15(21), pages 1-23, November.
    3. Lu, Shyi-Min, 2016. "A review of high-efficiency motors: Specification, policy, and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    2. Asmat Ullah Khan & Lizhen Huang, 2023. "Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators," Energies, MDPI, vol. 16(16), pages 1-18, August.
    3. Matteo Berto & Matteo Beligoj & Luigi Alberti, 2025. "Quasi-Static Tractor Implement Model for Assessing Energy Savings in Partial Electrification," Energies, MDPI, vol. 18(11), pages 1-17, May.
    4. Diego Troncon & Luigi Alberti, 2020. "Case of Study of the Electrification of a Tractor: Electric Motor Performance Requirements and Design," Energies, MDPI, vol. 13(9), pages 1-15, May.
    5. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    6. Marcin Żugaj & Mohammed Edawdi & Grzegorz Iwański & Sebastian Topczewski & Przemysław Bibik & Piotr Fabiański, 2023. "An Unmanned Helicopter Energy Consumption Analysis," Energies, MDPI, vol. 16(4), pages 1-28, February.
    7. Wang, Wengjie & Wang, Hongyu & Pei, Ji & Chen, Jia & Gan, Xingcheng & Sun, Qin, 2025. "Artificial intelligence approach for energy and entropy analyses of a double-suction centrifugal pump," Energy, Elsevier, vol. 324(C).
    8. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. McCaffery, Cavan & Yang, Jiacheng & Karavalakis, Georgios & Yoon, Seungju & Johnson, Kent C. & Miller, J. Wayne & Durbin, Thomas D., 2022. "Evaluation of small off-road diesel engine emissions and aftertreatment systems," Energy, Elsevier, vol. 251(C).
    10. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.
    11. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.
    12. Subramanian Vasantharaj & Vairavasundaram Indragandhi & Mohan Bharathidasan & Belqasem Aljafari, 2022. "Power Quality Analysis of a Hybrid Microgrid-Based SVM Inverter-Fed Induction Motor Drive with Modulation Index Diversification," Energies, MDPI, vol. 15(21), pages 1-21, October.
    13. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    14. Francesco Mocera & Aurelio Somà, 2020. "Analysis of a Parallel Hybrid Electric Tractor for Agricultural Applications," Energies, MDPI, vol. 13(12), pages 1-16, June.
    15. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    16. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    17. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    19. Chandrasekhar Reddy Gade & Razia Sultana Wahab, 2023. "Conceptual Framework for Modelling of an Electric Tractor and Its Performance Analysis Using a Permanent Magnet Synchronous Motor," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    20. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4021-:d:1712002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.