IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3997-d1711034.html
   My bibliography  Save this article

Optimizing Assembly Error Reduction in Wind Turbine Gearboxes Using Parallel Assembly Sequence Planning and Hybrid Particle Swarm-Bacteria Foraging Optimization Algorithm

Author

Listed:
  • Sydney Mutale

    (School of New Energy, North China Electric Power University, Beijing 102206, China
    School of Engineering, University of Zambia, Lusaka P.O. Box 32379, Zambia)

  • Yong Wang

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • De Tian

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

Abstract

This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored to the unique challenges of gearbox assembly. The PSBFO algorithm combines the global search capabilities of PSO with the local refinement of BFO, creating a unified framework that efficiently explores task sequencing, minimizing misalignment and torque misapplication assembly errors. The methodology results in a 38% reduction in total assembly errors, improving both process accuracy and efficiency. Specifically, the PSBFO algorithm reduced errors from an initial value of 50 to a final value of 5 across 20 iterations, with components such as the low-speed shaft and planetary gear system showing the most substantial reductions. The 50 to 5 error reduction represents a significant decrease in assembly errors from an unoptimized (50) to an optimized (5) sequence, achieved through the PSBFO algorithm, by minimizing dimensional deviations, torque mismatches, and alignment errors across 26 critical gearbox components. While the primary focus is on wind turbine gearbox applications, this approach has the potential for broader applicability in error-prone assembly processes in industries such as automotive and aerospace, warranting further validation in future studies.

Suggested Citation

  • Sydney Mutale & Yong Wang & De Tian, 2025. "Optimizing Assembly Error Reduction in Wind Turbine Gearboxes Using Parallel Assembly Sequence Planning and Hybrid Particle Swarm-Bacteria Foraging Optimization Algorithm," Energies, MDPI, vol. 18(15), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3997-:d:1711034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kannan, Govindan & Pokharel, Shaligram & Sasi Kumar, P., 2009. "A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 28-36.
    2. Ho, William & Xu, Xiaowei & Dey, Prasanta K., 2010. "Multi-criteria decision making approaches for supplier evaluation and selection: A literature review," European Journal of Operational Research, Elsevier, vol. 202(1), pages 16-24, April.
    3. Xin Wan & Kun Liu & Weijian Qiu & Zhenhang Kang, 2024. "An Assembly Sequence Planning Method Based on Multiple Optimal Solutions Genetic Algorithm," Mathematics, MDPI, vol. 12(4), pages 1-26, February.
    4. Yanfang Yang & Miao Yang & Liang Shu & Shasha Li & Zhiping Liu, 2020. "A Novel Parallel Assembly Sequence Planning Method for Complex Products Based on PSOBC," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, May.
    5. Javier Faulin & Angel A. Juan & Sebastián Martorell & José-Emmanuel Ramírez-Márquez (ed.), 2010. "Simulation Methods for Reliability and Availability of Complex Systems," Springer Series in Reliability Engineering, Springer, number 978-1-84882-213-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alptekin Ulutaş & Ayşe Topal & Dragan Pamučar & Željko Stević & Darjan Karabašević & Gabrijela Popović, 2022. "A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    2. Jianxiong Zhang & Lin Feng & Wansheng Tang, 2014. "Optimal Contract Design of Supplier-Led Outsourcing Based on Pontryagin Maximum Principle," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 592-607, May.
    3. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    4. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    5. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    6. Davis-Sramek, Beth & Robinson, Jessica L. & Darby, Jessica L. & Thomas, Rodney W., 2020. "Exploring the differential roles of environmental and social sustainability in carrier selection decisions," International Journal of Production Economics, Elsevier, vol. 227(C).
    7. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    8. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    9. Zhang Chen & Yuanlu Liang & Yangyang Wu & Lijun Sun, 2019. "Research on Comprehensive Multi-Infrastructure Optimization in Transportation Asset Management: The Case of Roads and Bridges," Sustainability, MDPI, vol. 11(16), pages 1-12, August.
    10. Mkedder, Nadjim & Jain, Varsha & Salunke, Parth, 2024. "Determinants of virtual reality stores influencing purchase intention: An interpretive structural modeling approach," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    11. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    12. Eleonora Bottani & Piera Centobelli & Teresa Murino & Ehsan Shekarian, 2018. "A QFD-ANP Method for Supplier Selection with Benefits, Opportunities, Costs and Risks Considerations," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 911-939, May.
    13. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    14. Dobos, Imre & Vörösmarty, Gyöngyi, 2019. "Inventory-related costs in green supplier selection problems with Data Envelopment Analysis (DEA)," International Journal of Production Economics, Elsevier, vol. 209(C), pages 374-380.
    15. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    16. Ali Salmasnia & Hamid Daliri & Ali Ghorbanian & Hadi Mokhtari, 2018. "A statistical analysis and simulation based approach to an uncertain supplier selection problem with discount option," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1250-1259, December.
    17. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    18. Alaa Alden Al Mohamed & Sobhi Al Mohamed, 2023. "Application of fuzzy group decision-making selecting green supplier: a case study of the manufacture of natural laurel soap," Future Business Journal, Springer, vol. 9(1), pages 1-20, December.
    19. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    20. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3997-:d:1711034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.