IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3928-d1708135.html
   My bibliography  Save this article

Pre- and Post-Self-Renovation Variations in Indoor Temperature: Methodological Pipeline and Cloud Monitoring Results in Two Small Residential Buildings

Author

Listed:
  • Giacomo Chiesa

    (Department of Architecture and Design, Politecnico di Torino, 10125 Turin, Italy)

  • Paolo Carrisi

    (Department of Architecture and Design, Politecnico di Torino, 10125 Turin, Italy)

Abstract

The impacts of renovation actions on pre- and post-retrofitting building performances are complex to analyse, particularly small and potentially self-actuated actions, such as adding insulation layers to a cold roof slab or changing doors. These interventions are widespread in small residential houses and cases where the owners are the residents. However, a large research gap currently remains regarding the impact of sustainable solutions on building performance. This study aims to address this issue by proposing a methodology based on commercial cloud monitoring solutions and middleware development that analyses and reports on the impact of such solutions to end users, allowing for an analysis of real variations in air temperature levels. The methodology is applied to two single/double-family residential houses, acting as demo cases for verification, across a multi-year time horizon. In both cases, measurements were conducted before and after typical limited renovation actions. Alongside the proposed methodology, descriptions of the smart solutions’ requirements are provided. The results mainly focus on temperature variations. Finally, the impact of the solutions on energy consumption was analysed for one of the buildings, and feedback was briefly provided by the users.

Suggested Citation

  • Giacomo Chiesa & Paolo Carrisi, 2025. "Pre- and Post-Self-Renovation Variations in Indoor Temperature: Methodological Pipeline and Cloud Monitoring Results in Two Small Residential Buildings," Energies, MDPI, vol. 18(15), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3928-:d:1708135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giacomo Chiesa & Francesca Fasano & Paolo Grasso, 2021. "A New Tool for Building Energy Optimization: First Round of Successful Dynamic Model Simulations," Energies, MDPI, vol. 14(19), pages 1-20, October.
    2. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    3. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    4. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    2. Hana Begić Juričić & Hrvoje Krstić & Mihaela Domazetović, 2025. "Analyzing the Carbon Performance Gap and Thermal Energy Performance Gap of School Buildings in Osijek-Baranja County, Croatia," Energies, MDPI, vol. 18(7), pages 1-21, April.
    3. Simon Wenninger & Christian Wiethe, 2021. "Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 223-242, June.
    4. Moeller, Simon & Bauer, Amelie, 2022. "Energy (in)efficient comfort practices: How building retrofits influence energy behaviours in multi-apartment buildings," Energy Policy, Elsevier, vol. 168(C).
    5. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    6. Ting Jin & Rui Xu & Kunqi Su & Jinrui Gao, 2025. "A Dendritic Neural Network-Based Model for Residential Electricity Consumption Prediction," Mathematics, MDPI, vol. 13(4), pages 1-23, February.
    7. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    8. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    9. Kazimierz Kawa & Rafał Mularczyk & Waldemar Bauer & Katarzyna Grobler-Dębska & Edyta Kucharska, 2024. "Prediction of Energy Consumption on Example of Heterogenic Commercial Buildings," Energies, MDPI, vol. 17(13), pages 1-16, June.
    10. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    11. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    12. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    13. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    14. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    15. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    17. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    18. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    20. Meng Wang & Junqi Yu & Meng Zhou & Wei Quan & Renyin Cheng, 2023. "Joint Forecasting Model for the Hourly Cooling Load and Fluctuation Range of a Large Public Building Based on GA-SVM and IG-SVM," Sustainability, MDPI, vol. 15(24), pages 1-23, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3928-:d:1708135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.