IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3913-d1707590.html
   My bibliography  Save this article

Using Deep Learning in Forecasting the Production of Electricity from Photovoltaic and Wind Farms

Author

Listed:
  • Michał Pikus

    (Department of Applied Computer Science, Computer Science and Biomedical Engineering, Faculty of Electrical Engineering, Automatics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Jarosław Wąs

    (Department of Applied Computer Science, Computer Science and Biomedical Engineering, Faculty of Electrical Engineering, Automatics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Agata Kozina

    (Department of Process Management, Wroclaw University of Economics and Business, Komandorska 118/120, 53-545 Wroclaw, Poland)

Abstract

Accurate forecasting of electricity production is crucial for the stability of the entire energy sector. However, predicting future renewable energy production and its value is difficult due to the complex processes that affect production using renewable energy sources. In this article, we examine the performance of basic deep learning models for electricity forecasting. We designed deep learning models, including recursive neural networks (RNNs), which are mainly based on long short-term memory (LSTM) networks; gated recurrent units (GRUs), convolutional neural networks (CNNs), temporal fusion transforms (TFTs), and combined architectures. In order to achieve this goal, we have created our benchmarks and used tools that automatically select network architectures and parameters. Data were obtained as part of the NCBR grant (the National Center for Research and Development, Poland). These data contain daily records of all the recorded parameters from individual solar and wind farms over the past three years. The experimental results indicate that the LSTM models significantly outperformed the other models in terms of forecasting. In this paper, multilayer deep neural network (DNN) architectures are described, and the results are provided for all the methods. This publication is based on the results obtained within the framework of the research and development project “POIR.01.01.01-00-0506/21”, realized in the years 2022–2023. The project was co-financed by the European Union under the Smart Growth Operational Programme 2014–2020.

Suggested Citation

  • Michał Pikus & Jarosław Wąs & Agata Kozina, 2025. "Using Deep Learning in Forecasting the Production of Electricity from Photovoltaic and Wind Farms," Energies, MDPI, vol. 18(15), pages 1-30, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3913-:d:1707590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    2. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    3. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    4. Li, Guanglei & Wang, Guohao & Luo, Tengqi & Hu, Yuxiao & Wu, Shouyuan & Gong, Guanghui & Song, Chenchen & Guo, Zhiling & Liu, Zhengguang, 2024. "SolarSAM: Building-scale photovoltaic potential assessment based on Segment Anything Model (SAM) and remote sensing for emerging city," Renewable Energy, Elsevier, vol. 237(PA).
    5. Hategan, Sergiu-Mihai & Stefu, Nicoleta & Petreus, Dorin & Szilagyi, Eniko & Patarau, Toma & Paulescu, Marius, 2025. "Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches," Energy, Elsevier, vol. 316(C).
    6. Gao, Xifeng & Li, Yichu & Liu, Mengmeng & Lian, Jijian & Ma, Qian & Zhang, Ju & Wu, Sheng & Cui, Yiming, 2025. "An exploratory framework for analyzing the impact of salt deposition on offshore photovoltaic system," Renewable Energy, Elsevier, vol. 242(C).
    7. Goutte, Stéphane & Klotzner, Klemens & Le, Hoang-Viet & von Mettenheim, Hans-Jörg, 2024. "Forecasting photovoltaic production with neural networks and weather features," Energy Economics, Elsevier, vol. 139(C).
    8. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    9. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    11. Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
    12. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
    13. Hao, Jianhua & Liu, Fangai & Zhang, Weiwei, 2024. "Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 309(C).
    14. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    15. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    16. Ankun Hu & Zexia Duan & Yichi Zhang & Zifan Huang & Tianbo Ji & Xuanhua Yin, 2025. "Impact of PM 2.5 Pollution on Solar Photovoltaic Power Generation in Hebei Province, China," Energies, MDPI, vol. 18(15), pages 1-26, August.
    17. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    18. Bowen Zhou & Xinyu Chen & Guangdi Li & Peng Gu & Jing Huang & Bo Yang, 2023. "XGBoost–SFS and Double Nested Stacking Ensemble Model for Photovoltaic Power Forecasting under Variable Weather Conditions," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    19. Jonathan, Anto Leoba & Cai, Dongsheng & Ukwuoma, Chiagoziem C. & Nkou, Nkou Joseph Junior & Huang, Qi & Bamisile, Olusola, 2024. "A radiant shift: Attention-embedded CNNs for accurate solar irradiance forecasting and prediction from sky images," Renewable Energy, Elsevier, vol. 234(C).
    20. Wang, Shinong & Wang, Zheng & Ge, Yuan & Amer, Ragab Ahmed, 2025. "Performance estimator of photovoltaic modules by integrating deep learning network with physical model," Energy, Elsevier, vol. 325(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3913-:d:1707590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.