IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3791-d1703619.html
   My bibliography  Save this article

Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations

Author

Listed:
  • Andrea Scrocca

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4a, 20156 Milan, Italy)

  • Roberto Pisani

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4a, 20156 Milan, Italy)

  • Diego Andreotti

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4a, 20156 Milan, Italy)

  • Giuliano Rancilio

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4a, 20156 Milan, Italy)

  • Maurizio Delfanti

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4a, 20156 Milan, Italy)

  • Filippo Bovera

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4a, 20156 Milan, Italy)

Abstract

Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities.

Suggested Citation

  • Andrea Scrocca & Roberto Pisani & Diego Andreotti & Giuliano Rancilio & Maurizio Delfanti & Filippo Bovera, 2025. "Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations," Energies, MDPI, vol. 18(14), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3791-:d:1703619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed, Ahmed & Rigo-Mariani, Rémy & Debusschere, Vincent & Pin, Lionel, 2023. "Stacked revenues for energy storage participating in energy and reserve markets with an optimal frequency regulation modeling," Applied Energy, Elsevier, vol. 350(C).
    2. Alessandro Saldarini & Michela Longo & Morris Brenna & Dario Zaninelli, 2023. "Battery Electric Storage Systems: Advances, Challenges, and Market Trends," Energies, MDPI, vol. 16(22), pages 1-30, November.
    3. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    4. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Kun Zheng & Zhiyuan Sun & Yi Song & Chen Zhang & Chunyu Zhang & Fuhao Chang & Dechang Yang & Xueqian Fu, 2025. "Stochastic Scenario Generation Methods for Uncertainty in Wind and Photovoltaic Power Outputs: A Comprehensive Review," Energies, MDPI, vol. 18(3), pages 1-31, January.
    6. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    7. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2023. "Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling," Post-Print hal-04182119, HAL.
    8. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
    9. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    10. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    11. Visser, L.R. & AlSkaif, T.A. & Khurram, A. & Kleissl, J. & van Sark, W.G.H.J.M., 2024. "Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy," Applied Energy, Elsevier, vol. 370(C).
    12. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    2. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    3. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere, 2025. "Impact of modeling assumptions on the economic performance assessment of a storage participating in energy and reserve markets," Post-Print hal-05212162, HAL.
    4. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    5. Liao, Hong & Chen, Yunzhu & Zheng, Zixuan & Xiao, Xianyong & Zhang, Shu, 2025. "A two-stage business model for voltage sag sensitive industrial users employing energy storage systems," Applied Energy, Elsevier, vol. 379(C).
    6. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
    7. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    8. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    9. Ben Ammar, Rim & Ben Ammar, Mohsen & Oualha, Abdelmajid, 2020. "Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems," Renewable Energy, Elsevier, vol. 153(C), pages 1016-1028.
    10. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    11. Chen, Shi & Li, Chuangzhi & Zang, Tianlei & Zhou, Buxiang & Yang, Lonjie & Qiu, Yiwei & Zhou, Yi & Zhang, Xiaoshun, 2024. "Multi-timescale dispatch technology for islanded energy system in the Gobi Desert," Renewable Energy, Elsevier, vol. 234(C).
    12. Pierro, Marco & Cornaro, Cristina & Moser, David & Perez, Richard & Perez, Marc & Zambotti, Stefano & Barchi, Grazia, 2024. "Ground-breaking approach to enabling fully solar renewable energy communities," Renewable Energy, Elsevier, vol. 237(PA).
    13. Hasna Hissou & Said Benkirane & Azidine Guezzaz & Mourade Azrour & Abderrahim Beni-Hssane, 2023. "A Novel Machine Learning Approach for Solar Radiation Estimation," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    14. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    15. Cecilia Martinez-Castillo & Gonzalo Astray & Juan Carlos Mejuto, 2021. "Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models," Energies, MDPI, vol. 14(8), pages 1-16, April.
    16. Mirzaei Alavijeh, Nima & Khezri, Rahmat & Mazidi, Mohammadreza & Steen, David & Le, Anh Tuan, 2025. "Profit benchmarking and degradation analysis for revenue stacking of batteries in Sweden’s day-ahead electricity and frequency containment reserve markets," Applied Energy, Elsevier, vol. 381(C).
    17. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    18. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    19. Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
    20. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2024. "Operational Planning Strategies to Mitigate Price Uncertainty in Day-Ahead Market for a Battery Energy System," Post-Print hal-04628352, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3791-:d:1703619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.