IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3724-d1701382.html
   My bibliography  Save this article

Rural Renewable Energy Resources Assessment and Electricity Development Scenario Simulation Based on the LEAP Model

Author

Listed:
  • Hai Jiang

    (China Renewable Energy Engineering Institute, Beijing 100120, China)

  • Haoshuai Jia

    (China Renewable Energy Engineering Institute, Beijing 100120, China)

  • Yong Qiao

    (China Renewable Energy Engineering Institute, Beijing 100120, China)

  • Wenzhi Liu

    (China Renewable Energy Engineering Institute, Beijing 100120, China
    PowerChina HuBei Electric Engineering Co., Ltd., Wuhan 430040, China)

  • Yijun Miao

    (PowerChina HuBei Electric Engineering Co., Ltd., Wuhan 430040, China)

  • Wuhao Wen

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ruonan Li

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Chang Wen

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, and Greenwich software provides wind resource simulation with local terrain adaptability. The results show that the capacity of photovoltaic power generation reaches approximately 15.63 GW, the potential of wind power is 458.3 MW, and the equivalent of agricultural waste is 433,900 tons of standard coal. The city is rich in wind, solar, and biomass resources. By optimizing the hybrid power generation system through genetic algorithms, wind energy, solar energy, biomass energy, and coal power are combined to balance the annual electricity demand in rural areas. The energy trends under different demand growth rates were predicted through the LEAP model, revealing that in the clean coal scenario of carbon capture (WSBC-CCS), clean coal power and renewable energy will dominate by 2030. Carbon dioxide emissions will peak in 2024 and return to the 2020 level between 2028 and 2029. Under the scenario of pure renewable energy (H_WSB), SO 2 /NO x will be reduced by 23–25%, and carbon dioxide emissions will approach zero. This study evaluates the renewable energy potential, power system capacity optimization, and carbon emission characteristics of pilot cities at a macro scale. Future work should further analyze the impact mechanisms of data sensitivity on these assessment results.

Suggested Citation

  • Hai Jiang & Haoshuai Jia & Yong Qiao & Wenzhi Liu & Yijun Miao & Wuhao Wen & Ruonan Li & Chang Wen, 2025. "Rural Renewable Energy Resources Assessment and Electricity Development Scenario Simulation Based on the LEAP Model," Energies, MDPI, vol. 18(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3724-:d:1701382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    2. Zhang, Hongyu & Tomasgard, Asgeir & Knudsen, Brage Rugstad & Svendsen, Harald G. & Bakker, Steffen J. & Grossmann, Ignacio E., 2022. "Modelling and analysis of offshore energy hubs," Energy, Elsevier, vol. 261(PA).
    3. Mohammadjavad Mobarra & Miloud Rezkallah & Adrian Ilinca, 2022. "Variable Speed Diesel Generators: Performance and Characteristic Comparison," Energies, MDPI, vol. 15(2), pages 1-31, January.
    4. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    5. Ren, Yan & Sun, Ketao & Zhang, Kai & Han, Yuping & Zhang, Haonan & Wang, Meijing & Jing, Xiang & Mo, Juhua & Zou, Wenhang & Xing, Xinyang, 2024. "Optimization of the capacity configuration of an abandoned mine pumped storage/wind/photovoltaic integrated system," Applied Energy, Elsevier, vol. 374(C).
    6. Agrawal, Shalu & Harish, S.P. & Mahajan, Aseem & Thomas, Daniel & Urpelainen, Johannes, 2020. "Influence of improved supply on household electricity consumption - Evidence from rural India," Energy, Elsevier, vol. 211(C).
    7. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    2. Zhang, Wei & Zhu, Rui & Liu, Bin & Ramakrishna, Seeram, 2012. "High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode," Applied Energy, Elsevier, vol. 90(1), pages 305-308.
    3. Zhang, Boqun & Wang, Yuanfeng & Pan, Lei & Guo, Xiaohui & Liu, Yinshan & Shi, Chengcheng & Xue, Shaoqin & Wang, Liping & Chang, Xinlei & Fan, Lei, 2025. "Net zero carbon park planning framework: Methodology, application, and economic feasibility analysis," Energy, Elsevier, vol. 325(C).
    4. Mwaka I. Juma & Bakari M. M. Mwinyiwiwa & Consalva J. Msigwa & Aviti T. Mushi, 2021. "Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application," Energies, MDPI, vol. 14(18), pages 1-15, September.
    5. Yunfei Hu & Kefei Zhang & Sheng Liu & Zhong Wang, 2025. "Research on Day-Ahead Optimal Scheduling of Wind–PV–Thermal–Pumped Storage Based on the Improved Multi-Objective Jellyfish Search Algorithm," Energies, MDPI, vol. 18(9), pages 1-38, April.
    6. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    7. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    8. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    9. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    10. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    12. Yan Ren & Haonan Zhang & Lile Wu & Kai Zhang & Zutian Cheng & Ketao Sun & Yuan Sun & Leiming Hu, 2025. "Research on the Health Evaluation of a Pump Turbine in Smoothing Output Volatility of the Hybrid System Under a High Proportion of Wind and Photovoltaic Power Connection," Energies, MDPI, vol. 18(5), pages 1-30, March.
    13. Niranjan Rao Deevela & Tara C. Kandpal & Bhim Singh, 2024. "A review of renewable energy based power supply options for telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 2897-2964, February.
    14. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    15. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    16. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    17. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    18. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    19. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    20. Park, Jiseon & Yang, Won & Jung, Sooho & Lee, Hyeongseok & Hong, Jongsup & Lee, Yongwoon & Kim, Seongil, 2024. "Assessment of energy self-sufficiency of a smart farm through integrated modeling of air-source heat pumps and solar power generation," Applied Energy, Elsevier, vol. 367(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3724-:d:1701382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.