IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5994-d639954.html
   My bibliography  Save this article

Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application

Author

Listed:
  • Mwaka I. Juma

    (Electrical Engineering Department, University of Dar es Salaam, Dar es Salaam P.O. Box 35131, Tanzania
    Electrical Engineering Department, Dar es Salaam Insititute of Technology, Dar es Salaam P.O. Box 2958, Tanzania)

  • Bakari M. M. Mwinyiwiwa

    (Electrical Engineering Department, University of Dar es Salaam, Dar es Salaam P.O. Box 35131, Tanzania)

  • Consalva J. Msigwa

    (Electrical Engineering Department, Dar es Salaam Insititute of Technology, Dar es Salaam P.O. Box 2958, Tanzania)

  • Aviti T. Mushi

    (Electrical Engineering Department, University of Dar es Salaam, Dar es Salaam P.O. Box 35131, Tanzania)

Abstract

This paper presents microgrid-distributed energy resources (DERs) for a rural standalone system. It is made up of a solar photovoltaic (solar PV) system, battery energy storage system (BESS), and a wind turbine coupled to a permanent magnet synchronous generator (WT-PMSG). The DERs are controlled by maximum power point tracking (MPPT)-based proportional integral (PI) controllers for both maximum power tracking and error feedback compensation. The MPPT uses the perturb and observe (P&O) algorithm for tracking the maximum power point of the DERs. The PI gains are tuned using the Ziegler–Nichols method. The developed system was built and simulated in MATLAB/Simulink under two conditions—constant load, and step-load changes. The controllers enabled the BESS to charge even during conditions of varying load and other environmental factors such as change of irradiance and wind speed. The reference was tracked extremely well by the output voltage of the DC microgrid. This is useful research for electrifying the rural islanded areas which are too far from the grid.

Suggested Citation

  • Mwaka I. Juma & Bakari M. M. Mwinyiwiwa & Consalva J. Msigwa & Aviti T. Mushi, 2021. "Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application," Energies, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5994-:d:639954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lennart Petersen & Florin Iov & German Claudio Tarnowski, 2019. "A Model-Based Design Approach for Stability Assessment, Control Tuning and Verification in Off-Grid Hybrid Power Plants," Energies, MDPI, vol. 13(1), pages 1-26, December.
    2. Nguyen Van Tan & Nguyen Binh Nam & Nguyen Huu Hieu & Le Kim Hung & Minh Quan Duong & Le Hong Lam, 2020. "A Proposal for an MPPT Algorithm Based on the Fluctuations of the PV Output Power, Output Voltage, and Control Duty Cycle for Improving the Performance of PV Systems in Microgrid," Energies, MDPI, vol. 13(17), pages 1-21, August.
    3. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    4. Tamer Khatib & Lama Sabri, 2021. "Grid Impact Assessment of Centralized and Decentralized Photovoltaic-Based Distribution Generation: A Case Study of Power Distribution Network with High Renewable Energy Penetration," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, July.
    5. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    6. Tingyi He & Shengnan Li & Shuijun Wu & Ke Li, 2021. "Small-Signal Stability Analysis for Power System Frequency Regulation with Renewable Energy Participation," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Samawi Alkhafaji & Hafedh Trabelsi, 2022. "Uses of Superconducting Magnetic Energy Storage Systems in Microgrids under Unbalanced Inductive Loads and Partial Shading Conditions," Energies, MDPI, vol. 15(22), pages 1-28, November.
    2. Stanisław Chudzik, 2023. "Wind Microturbine with Adjustable Blade Pitch Angle," Energies, MDPI, vol. 16(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    2. Zhang, Wei & Zhu, Rui & Liu, Bin & Ramakrishna, Seeram, 2012. "High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode," Applied Energy, Elsevier, vol. 90(1), pages 305-308.
    3. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    4. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    5. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    6. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    7. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    9. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    10. Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    12. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    13. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    14. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    15. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    16. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    19. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    20. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5994-:d:639954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.