IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3706-d1701132.html
   My bibliography  Save this article

A Method for Selecting the Appropriate Source Domain Buildings for Building Energy Prediction in Transfer Learning: Using the Euclidean Distance and Pearson Coefficient

Author

Listed:
  • Chuyi Luo

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 East Taikang Road, Ningbo 315100, China)

  • Liang Xia

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 East Taikang Road, Ningbo 315100, China)

  • Sung-Hugh Hong

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, 199 East Taikang Road, Ningbo 315100, China)

Abstract

Building energy prediction faces challenges such as data scarcity while Transfer Learning (TL) demonstrates significant potential by leveraging source building energy data to enhance target building energy prediction. However, the accuracy of TL heavily relies on selecting appropriate source buildings as the source data. This study proposes a novel, easy-to-understand, statistics-based visualization method that combines the Euclidean distance and Pearson correlation coefficient for selecting source buildings in TL for target building electricity prediction. Long Short-Term Memory, the Gated Recurrent Unit, and the Convolutional Neural Network were applied to verify the appropriateness of the source domain buildings. The results showed the source building, selected via the method proposed by this research, could reduce 65% of computational costs, while the RMSE was approximately 6.5 kWh, and the R 2 was around 0.92. The method proposed in this study is well suited for scenes requiring rapid response times and exhibiting low tolerance for prediction errors.

Suggested Citation

  • Chuyi Luo & Liang Xia & Sung-Hugh Hong, 2025. "A Method for Selecting the Appropriate Source Domain Buildings for Building Energy Prediction in Transfer Learning: Using the Euclidean Distance and Pearson Coefficient," Energies, MDPI, vol. 18(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3706-:d:1701132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
    2. Guangsu Zhou & Gaosi Chu & Lixing Li & Lingsheng Meng, 2020. "The effect of artificial intelligence on China’s labor market," China Economic Journal, Taylor & Francis Journals, vol. 13(1), pages 24-41, January.
    3. Lu, Jie & Zhang, Chaobo & Li, Junyang & Zhao, Yang & Qiu, Weikang & Li, Tingting & Zhou, Kai & He, Jianing, 2022. "Graph convolutional networks-based method for estimating design loads of complex buildings in the preliminary design stage," Applied Energy, Elsevier, vol. 322(C).
    4. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    5. Das, Anooshmita & Annaqeeb, Masab Khalid & Azar, Elie & Novakovic, Vojislav & Kjærgaard, Mikkel Baun, 2020. "Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods," Applied Energy, Elsevier, vol. 269(C).
    6. Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
    7. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    8. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    9. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    10. Xinqin Liao & Weitao Song & Xiangyu Zhang & Chaoqun Yan & Tianliang Li & Hongliang Ren & Cunzhi Liu & Yongtian Wang & Yuanjin Zheng, 2020. "A bioinspired analogous nerve towards artificial intelligence," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    11. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    12. Benjamin Haibe-Kains & George Alexandru Adam & Ahmed Hosny & Farnoosh Khodakarami & Levi Waldron & Bo Wang & Chris McIntosh & Anna Goldenberg & Anshul Kundaje & Casey S. Greene & Tamara Broderick & Mi, 2020. "Transparency and reproducibility in artificial intelligence," Nature, Nature, vol. 586(7829), pages 14-16, October.
    13. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).
    14. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    15. Charles M. A. Clark & Aleksandr V. Gevorkyan, 2020. "Artificial Intelligence and Human Flourishing," American Journal of Economics and Sociology, Wiley Blackwell, vol. 79(4), pages 1307-1344, September.
    16. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Henao & Liliana López-Jiménez, 2021. "Disrupción tecnológica, transformación digital y sociedad. Tomo IV, Aires de revolución : nuevos desafíos tecnológicos a las instituciones económicas, financieras y organizacionales de nuestros tiempo," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1283, December.
    2. Weege, Maria & Zweigle, Tanja, 2025. "AI in marketing education: Capabilities required of marketers today," IU Discussion Papers - Marketing & Communication 2 (April 2025), IU International University of Applied Sciences.
    3. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    4. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    5. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    6. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    7. Takaaki Onaga & Masaki Fujita & Yoshinobu Kano, 2024. "Contribution Analysis of Large Language Models and Data Augmentations for Person Names in Solving Legal Bar Examination at COLIEE 2023," The Review of Socionetwork Strategies, Springer, vol. 18(1), pages 123-143, April.
    8. Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
    9. Zhou, Xinlei & Lin, Wenye & Kumar, Ritunesh & Cui, Ping & Ma, Zhenjun, 2022. "A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption," Applied Energy, Elsevier, vol. 306(PB).
    10. Igna, Ioana & Venturini, Francesco, 2023. "The determinants of AI innovation across European firms," Research Policy, Elsevier, vol. 52(2).
    11. Chen, Zhongfei & Jiang, Kangqi, 2024. "Digitalization and corporate investment efficiency: Evidence from China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    12. Marko D. Petrović & Tamara Gajić & Shakhislam Laiskhanov & Milan M. Radovanović & Željko Anđelković & Emin Atasoy & Dariga M. Khamitova, 2025. "Do Different Settings Matter in the Economically Sustainable Tourism Approach? A Comparative Study of Serbia, Kazakhstan, and Hungary," Sustainability, MDPI, vol. 17(11), pages 1-35, May.
    13. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    14. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    16. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    17. Cui, Mianshan, 2022. "District heating load prediction algorithm based on bidirectional long short-term memory network model," Energy, Elsevier, vol. 254(PA).
    18. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    19. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    20. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3706-:d:1701132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.