IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3532-d1694530.html
   My bibliography  Save this article

Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output

Author

Listed:
  • Mohammad Barooni

    (Ocean Engineering and Marine Science, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Deniz Velioglu Sogut

    (Ocean Engineering and Marine Science, Florida Institute of Technology, Melbourne, FL 32901, USA)

  • Parviz Sedigh

    (Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA)

  • Masoumeh Bahrami

    (Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA)

Abstract

This study presents a novel approach in the field of renewable energy, focusing on the power generation capabilities of floating offshore wind turbines (FOWTs). The study addresses the challenges of designing and assessing the power generation of FOWTs due to their multidisciplinary nature involving aerodynamics, hydrodynamics, structural dynamics, and control systems. A hybrid deep learning model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks is proposed to predict the performance of FOWTs accurately and more efficiently than traditional numerical models. This model addresses computational complexity and lengthy processing times of conventional models, offering adaptability, scalability, and efficient handling of nonlinear dynamics. The results for predicting the generator power of a spar-type floating offshore wind turbine (FOWT) in a multivariable parallel time-series dataset using the Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model showed promising outcomes, offering valuable insights into the model’s performance and potential applications. Its ability to capture a comprehensive range of load case scenarios—from mild to severe—through the integration of multiple relevant features significantly enhances the model’s robustness and applicability in realistic offshore environments. The research demonstrates the potential of deep learning methods in advancing renewable energy technology, specifically in optimizing turbine efficiency, anticipating maintenance needs, and integrating wind power into energy grids.

Suggested Citation

  • Mohammad Barooni & Deniz Velioglu Sogut & Parviz Sedigh & Masoumeh Bahrami, 2025. "Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output," Energies, MDPI, vol. 18(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3532-:d:1694530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choe, Do-Eun & Kim, Hyoung-Chul & Kim, Moo-Hyun, 2021. "Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades," Renewable Energy, Elsevier, vol. 174(C), pages 218-235.
    2. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    3. Periklis Gogas & Theophilos Papadimitriou, 2023. "Machine Learning in Renewable Energy," Energies, MDPI, vol. 16(5), pages 1-3, February.
    4. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    5. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    6. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    7. Barooni, M. & Ale Ali, N. & Ashuri, T., 2018. "An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines," Energy, Elsevier, vol. 154(C), pages 442-454.
    8. Junejo, Allah Rakhio & Gilal, Nauman Ullah & Doh, Jaehyeok, 2023. "Physics-informed optimization of robust control system to enhance power efficiency of renewable energy: Application to wind turbine," Energy, Elsevier, vol. 263(PB).
    9. Amirhossein Ostovar & Danial Davani Davari & Maciej Dzikuć, 2025. "Determinants of Design with Multilayer Perceptron Neural Networks: A Comparison with Logistic Regression," Sustainability, MDPI, vol. 17(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    2. Cezary Banaszak & Andrzej Gawlik & Paweł Szcześniak & Marcin Rabe & Katarzyna Widera & Yuriy Bilan & Agnieszka Łopatka & Ewelina Gutowska, 2023. "Economic and Energy Analysis of the Construction of a Wind Farm with Infrastructure in the Baltic Sea," Energies, MDPI, vol. 16(16), pages 1-20, August.
    3. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    4. Peivand, Ali & Azad Farsani, Ehsan & Abdolmohammadi, Hamid Reza, 2024. "Accelerating optimal scheduling prediction in power system: A multi-faceted GAN-assisted prediction framework," Renewable Energy, Elsevier, vol. 230(C).
    5. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    6. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    7. Zeqing Yang & Wenbo Zhang & Wei Cui & Lingxiao Gao & Yingshu Chen & Qiang Wei & Libing Liu, 2022. "Abnormal Detection for Running State of Linear Motor Feeding System Based on Deep Neural Networks," Energies, MDPI, vol. 15(15), pages 1-22, August.
    8. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Christian Gück & Cyriana M. A. Roelofs & Stefan Faulstich, 2024. "CARE to Compare: A Real-World Benchmark Dataset for Early Fault Detection in Wind Turbine Data," Data, MDPI, vol. 9(12), pages 1-16, November.
    10. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    13. Luo, Kai & Chen, Liang & Liang, Wei, 2022. "Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method," Renewable Energy, Elsevier, vol. 201(P1), pages 1163-1175.
    14. Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
    15. Tian, Zhirui & Wang, Jiyang, 2022. "Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm," Energy, Elsevier, vol. 254(PA).
    16. Bingchun Liu & Mingzhao Lai, 2025. "Advanced Machine Learning for Financial Markets: A PCA-GRU-LSTM Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 3140-3174, March.
    17. Fanjie Yang & Yun Zeng & Jing Qian & Youtao Li & Shihao Xie, 2023. "Parameter Identification of Doubly-Fed Induction Wind Turbine Based on the ISIAGWO Algorithm," Energies, MDPI, vol. 16(3), pages 1-19, January.
    18. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    19. Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
    20. Xiaocong Xiao & Jianxun Liu & Deshun Liu & Yufei Tang & Fan Zhang, 2022. "Condition Monitoring of Wind Turbine Main Bearing Based on Multivariate Time Series Forecasting," Energies, MDPI, vol. 15(5), pages 1-23, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3532-:d:1694530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.