Author
Listed:
- Mahdieh Nasiri
(Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA)
- Hamid Hadim
(Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA)
Abstract
In this investigation, a comprehensive validation framework for an integrated electrochemical-thermal model that addresses critical thermal management challenges in lithium-ion batteries (LIBs) is presented. The two-dimensional numerical model combines the Newman–Tiedemann–Gu–Kim (NTGK) electrochemical-thermal battery framework with the enthalpy-porosity approach for phase change material (PCM) battery thermal management systems (BTMSs). Rigorous validation against benchmarks demonstrates the model’s exceptional predictive capability across a wide range of operating conditions. Simulated temperature distribution and voltage capacity profiles at multiple discharge rates show excellent agreement with the experimental data, accurately capturing the underlying electrochemical-thermal mechanisms. Incorporating Capric acid (with a phase transition range of 302–305 K) as the PCM, the thermal management model demonstrates significantly improved accuracy over existing models in the literature. Notable error reductions include a 78.3% decrease in the Mean Squared Error (0.477 vs. 2.202), a 53.4% reduction in the Root Mean Squared Error (0.619 vs. 1.483), and a 55.5% drop in the Mean Absolute Percentage Error. Statistical analysis further confirms the model’s robustness, with a high coefficient of determination (R 2 = 0.968858) and well-distributed residuals. Liquid fraction evolution analysis highlights the PCM’s ability to absorb thermal energy effectively during high-discharge operations, enhancing thermal regulation. This validated model provides a reliable foundation for the design of next-generation BTMS, aiming to improve the safety, performance, and lifespan of LIBs in advanced energy storage applications where thermal stability is critical.
Suggested Citation
Mahdieh Nasiri & Hamid Hadim, 2025.
"Advanced Numerical Validation of Integrated Electrochemical-Thermal Models for PCM-Based Li-Ion Battery Thermal Management System,"
Energies, MDPI, vol. 18(13), pages 1-22, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3386-:d:1688995
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3386-:d:1688995. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.