IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3318-d1686516.html
   My bibliography  Save this article

Prioritization of the Critical Factors of Hydrogen Transportation in Canada Using the Intuitionistic Fuzzy AHP Method

Author

Listed:
  • Monasib Romel

    (Industrial Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada)

  • Golam Kabir

    (Industrial Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada)

Abstract

Hydrogen is a potential source of imminent clean energy in the future, with its transportation playing a crucial role in allowing large-scale deployment. The challenge lies in selecting an effective, sustainable, and scalable transportation alternative. This study develops a multi-criteria decision-making (MCDM) framework based on the intuitionistic fuzzy analytic hierarchy process (IF-AHP) to evaluate land-based hydrogen transportation alternatives across Canada. The framework includes uncertainty and decision-maker hesitation through the application of triangular intuitionistic fuzzy numbers (TIFNs). Seven factors, their subsequent thirty-three subfactors, and three alternatives to hydrogen transportation were identified through a literature review. Pairwise comparison was aggregated among factors, subfactors, and alternatives from three decision makers using an intuitionistic fuzzy weighted average, and priority weights were computed using entropy-based weight. The results show that safety and economic efficiency emerged as the most influential factors in the evaluation of hydrogen transportation alternatives, followed by environmental impact, security, and social impact and public health in ascending order. Among the alternatives, tube truck transport obtained the highest overall weight (0.3551), followed by pipelines (0.3272) and rail lines (0.3251). The findings suggest that the tube ruck is currently the most feasible transport option for land-based hydrogen distribution that aims to provide a transition of Canada’s energy mix.

Suggested Citation

  • Monasib Romel & Golam Kabir, 2025. "Prioritization of the Critical Factors of Hydrogen Transportation in Canada Using the Intuitionistic Fuzzy AHP Method," Energies, MDPI, vol. 18(13), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3318-:d:1686516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De-León Almaraz, Sofía & Moustapha Mai, Tchougoune & Melendez, Iris Rocio & Loganathan, M.K. & Azzaro-Pantel, Catherine, 2024. "A holistic approach to assessing reliability in green hydrogen supply chains using mixed methods," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    2. Zongao Xie & Qihang Jin & Guanli Su & Wei Lu, 2024. "A Review of Hydrogen Storage and Transportation: Progresses and Challenges," Energies, MDPI, vol. 17(16), pages 1-30, August.
    3. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    4. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    5. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    6. Mohammed W. Qanbar & Zekai Hong, 2024. "A Review of Hydrogen Leak Detection Regulations and Technologies," Energies, MDPI, vol. 17(16), pages 1-27, August.
    7. Marcella Calabrese & Maria Portarapillo & Alessandra Di Nardo & Virginia Venezia & Maria Turco & Giuseppina Luciani & Almerinda Di Benedetto, 2024. "Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment," Energies, MDPI, vol. 17(6), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    2. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    3. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    4. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    5. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    6. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    7. Yongxi Huang & Yueyue Fan & Nils Johnson, 2010. "Multistage System Planning for Hydrogen Production and Distribution," Networks and Spatial Economics, Springer, vol. 10(4), pages 455-472, December.
    8. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    10. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    11. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    12. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Li, Guozhen, 2023. "The Hydrogen Fuel Pathway for Air Transportation," Institute of Transportation Studies, Working Paper Series qt3sh5x1vk, Institute of Transportation Studies, UC Davis.
    14. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    15. Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.
    16. Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
    17. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    18. Brey, J.J. & Carazo, A.F. & Brey, R., 2018. "Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2893-2899.
    19. Lu Zhu & Lanli Hu & Serhat Yüksel & Hasan Dinçer & Hüsne Karakuş & Gözde Gülseven Ubay, 2020. "Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    20. van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3318-:d:1686516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.