IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3229-d1683566.html
   My bibliography  Save this article

Very Short-Term Load Forecasting Model for Large Power System Using GRU-Attention Algorithm

Author

Listed:
  • Tae-Geun Kim

    (Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea)

  • Sung-Guk Yoon

    (Department of Electrical Engineering and Convergence of Energy Policy and Technology, Soongsil University, Seoul 06978, Republic of Korea)

  • Kyung-Bin Song

    (Department of Electrical Engineering and Convergence of Energy Policy and Technology, Soongsil University, Seoul 06978, Republic of Korea)

Abstract

This paper presents a very short-term load forecasting (VSTLF) model tailored for large-scale power systems, employing a gated recurrent unit (GRU) network enhanced with an attention mechanism. To improve forecasting accuracy, a systematic input feature selection method based on Normalized Mutual Information (NMI) is introduced. Additionally, a novel input feature termed the load variationis proposed to explicitly capture real-time dynamic load patterns. Tailored data preprocessing techniques are applied, including load reconstitution to account for the impact of Behind-The-Meter (BTM) solar generation, and a weighted averaging method for constructing representative weather inputs. Extensive case studies using South Korea’s national power system data from 2021 to 2023 demonstrate that the proposed GRU-attention model significantly outperforms existing approaches and benchmark models. In particular, when expressing the accuracy of the proposed method in terms of the error rate, the Mean Absolute Percentage Error (MAPE) is 0.77%, which shows an improvement of 0.50 percentage points over the benchmark model using the Kalman filter algorithm and an improvement of 0.27 percentage points over the hybrid deep learning benchmark (CNN-BiLSTM). The simulation results clearly demonstrate the effectiveness of the NMI-based feature selection and the combination of load characteristics for very short-term load forecasting.

Suggested Citation

  • Tae-Geun Kim & Sung-Guk Yoon & Kyung-Bin Song, 2025. "Very Short-Term Load Forecasting Model for Large Power System Using GRU-Attention Algorithm," Energies, MDPI, vol. 18(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3229-:d:1683566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chuang & Zhao, Haishen & Liu, Yang & Fan, Guojin, 2024. "Minute-level ultra-short-term power load forecasting based on time series data features," Applied Energy, Elsevier, vol. 372(C).
    2. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    3. Jiang, Yuqi & Gao, Tianlu & Dai, Yuxin & Si, Ruiqi & Hao, Jun & Zhang, Jun & Gao, David Wenzhong, 2022. "Very short-term residential load forecasting based on deep-autoformer," Applied Energy, Elsevier, vol. 328(C).
    4. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    5. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    6. Waqas Ahmad & Nasir Ayub & Tariq Ali & Muhammad Irfan & Muhammad Awais & Muhammad Shiraz & Adam Glowacz, 2020. "Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine," Energies, MDPI, vol. 13(11), pages 1-17, June.
    7. Spencer Kerkau & Saeed Sepasi & Harun Or Rashid Howlader & Leon Roose, 2025. "Day-Ahead Net Load Forecasting for Renewable Integrated Buildings Using XGBoost," Energies, MDPI, vol. 18(6), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    2. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
    3. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    4. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    5. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    6. Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
    7. Vasileios Laitsos & Georgios Vontzos & Paschalis Paraschoudis & Eleftherios Tsampasis & Dimitrios Bargiotas & Lefteri H. Tsoukalas, 2024. "The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market," Energies, MDPI, vol. 17(22), pages 1-37, November.
    8. Ouyang, Jing & Zuo, Zongxu & Wang, Qin & Duan, Qiaoning & Zhu, Xuanmian & Zhang, Yang, 2025. "Seasonal distribution analysis and short-term PV power prediction method based on decomposition optimization Deep-Autoformer," Renewable Energy, Elsevier, vol. 246(C).
    9. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    10. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    11. Jun Li & Xingzhao Zhang & Qingsong Hu & Fuxi Zhang & Oleg Gaidai & Leilei Chen, 2024. "Data Augmentation Technique Based on Improved Time-Series Generative Adversarial Networks for Power Load Forecasting in Recirculating Aquaculture Systems," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
    12. Yamin Shen & Yuxuan Ma & Simin Deng & Chiou-Jye Huang & Ping-Huan Kuo, 2021. "An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    13. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).
    14. Sajawal ur Rehman Khan & Israa Adil Hayder & Muhammad Asif Habib & Mudassar Ahmad & Syed Muhammad Mohsin & Farrukh Aslam Khan & Kainat Mustafa, 2022. "Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids," Energies, MDPI, vol. 16(1), pages 1-16, December.
    15. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
    16. Bellido-Jiménez, Juan Antonio & Estévez Gualda, Javier & García-Marín, Amanda Penélope, 2021. "Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions," Applied Energy, Elsevier, vol. 298(C).
    17. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    18. Yuyang Zhang & Lei Cui & Wenqiang Yan, 2025. "Integrating Kolmogorov–Arnold Networks with Time Series Prediction Framework in Electricity Demand Forecasting," Energies, MDPI, vol. 18(6), pages 1-18, March.
    19. Islam, Md. Zahidul & Lin, Yuzhang & Vokkarane, Vinod M. & Yu, Nanpeng, 2023. "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates," Applied Energy, Elsevier, vol. 352(C).
    20. Zhu, Jianhua & He, Yaoyao & Gao, Zhiwei, 2023. "Wind power interval and point prediction model using neural network based multi-objective optimization," Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3229-:d:1683566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.