IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3199-d1681676.html
   My bibliography  Save this article

Investigations on the Effect of Inclination Angle on the Aerodynamic Performance of a Two-Stage Centrifugal Compressor of a Proton Exchange Membrane Fuel Cell System

Author

Listed:
  • Wenke Wang

    (School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Dengfeng Yang

    (School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Li Guo

    (School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Rui Wu

    (School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Xiangyi Zhou

    (School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Qian Zhang

    (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Qingyi Kong

    (Department of Rail Transit, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050035, China)

  • Leon Hu

    (Ford Motor Company, Dearborn, MI 48124, USA)

Abstract

This study examines how leading-edge inclination angles affect a two-stage centrifugal compressor’s aerodynamic performance using numerical and experimental methods. Five impellers with varied inclination configurations were designed for both stages. The results show that negative inclination improves the pressure ratio and efficiency under near-choke conditions, with greater enhancements in the low-pressure stage. Positive inclination significantly boosts the pressure ratio and efficiency under near-stall conditions, particularly in the low-pressure stage. Negative inclinations optimize blade loading and choke flow capacity, while effectively reducing incidence angle deviations induced by interstage pipeline distortion and decreasing outlet pressure fluctuation amplitude in the high-pressure stage. Positive inclinations delay flow separation, suppress tip leakage vortices, and extend the stall margin.

Suggested Citation

  • Wenke Wang & Dengfeng Yang & Li Guo & Rui Wu & Xiangyi Zhou & Qian Zhang & Qingyi Kong & Leon Hu, 2025. "Investigations on the Effect of Inclination Angle on the Aerodynamic Performance of a Two-Stage Centrifugal Compressor of a Proton Exchange Membrane Fuel Cell System," Energies, MDPI, vol. 18(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3199-:d:1681676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    2. Petrone, Giovanni & Zamboni, Walter & Spagnuolo, Giovanni, 2019. "An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model," Applied Energy, Elsevier, vol. 242(C), pages 1226-1236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    3. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    4. Kofler, Sandro & Jakubek, Stefan & Hametner, Christoph, 2025. "Predictive energy management strategy with optimal stack start/stop control for fuel cell vehicles," Applied Energy, Elsevier, vol. 377(PB).
    5. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    6. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    7. Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Liao, Hongbo & Li, Yuan, 2024. "A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation," Renewable Energy, Elsevier, vol. 237(PC).
    8. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    9. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
    10. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    11. Benaggoune, Khaled & Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine, 2022. "A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 313(C).
    12. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    13. Sun, Zhendong & Wang, Yujie & Chen, Zonghai & Li, Xiyun, 2020. "Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles," Applied Energy, Elsevier, vol. 267(C).
    14. Zhou, Yang & Chen, Bo & Xu, Xianfeng & Zhang, Zhen & Ravey, Alexandre & Péra, Marie-Cécile & Ma, Ruiqing, 2024. "Data-driven cost-optimal energy management of postal-delivery fuel cell electric vehicle with intelligent dual-loop battery state-of-charge planner," Energy, Elsevier, vol. 290(C).
    15. Jiao, Jieran & Chen, Fengxiang, 2022. "Humidity estimation of vehicle proton exchange membrane fuel cell under variable operating temperature based on adaptive sliding mode observation," Applied Energy, Elsevier, vol. 313(C).
    16. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    17. Wang, Likun & Bliznakov, Stoyan & Isseroff, Rebecca & Zhou, Yuchen & Zuo, Xianghao & Raut, Aniket & Wang, Wanhua & Cuiffo, Michael & Kim, Taejin & Rafailovich, Miriam H., 2020. "Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy," Applied Energy, Elsevier, vol. 261(C).
    18. Kunang Li & Chunchun Jia & Xuefeng Han & Hongwen He, 2023. "A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    19. Jiaming Zhou & Jie Liu & Qingqing Su & Chunxiao Feng & Xingmao Wang & Donghai Hu & Fengyan Yi & Chunchun Jia & Zhixian Fan & Shangfeng Jiang, 2022. "Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    20. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3199-:d:1681676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.