IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002695.html
   My bibliography  Save this article

Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources

Author

Listed:
  • Waseem, Muhammad
  • Lin, Zhenzhi
  • Liu, Shengyuan
  • Zhang, Zhi
  • Aziz, Tarique
  • Khan, Danish

Abstract

Due to environmental issues and smart grid development, distributed energy resources, energy storage systems, and demand response (DR) are gaining attention to reduce the pollution and fossil fuel usage. This paper presents a customer’s preferences based innovative home appliances scheduling framework considering numerous constraints and DR for scheduling household appliances incorporating local energy grid and energy storage systems, including electrical and thermal energy storage. First, the models of household appliances and air conditioning load are built as the shiftable and non-schedulable loads and a flexible thermal load, respectively. Second, an enhanced normalized normal constraint (ENNC) strategy based on game theory (GT) is presented for a novel home appliance scheduling (HAS) framework with the objectives to optimize consumption cost, end-users comfort, and peak to average ratio. Then, the fuzzy compromising (FCP) method is proposed to optimize overall energy cost and gaseous emissions for the novel HAS framework with a residential local energy grid. In addition to this, conditional value at risk (CVaR) has also been incorporated in the objective function to resolve the sudden absence of distributed energy resources and power failures. Finally, case studies on data from Dallas, Texas, USA are performed, and the simulation results show that the proposed strategy is computationally inexpensive and outperforms other approaches in terms of electricity cost, gaseous emissions, and customer’s comfort. The proposed approach gives a significantly lower cost of 104.30 cents and gaseous emissions of about 18.753 kg for an entire day of novel HAS with DR adoption. Thus, it can provide help for DR accomplishment and precise prediction of electricity consumption.

Suggested Citation

  • Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002695
    DOI: 10.1016/j.apenergy.2021.116761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    2. Feng, Wei & Jin, Ming & Liu, Xu & Bao, Yi & Marnay, Chris & Yao, Cheng & Yu, Jiancheng, 2018. "A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools," Applied Energy, Elsevier, vol. 228(C), pages 1656-1668.
    3. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Hyung-Chul Jo & Rakkyung Ko & Sung-Kwan Joo, 2019. "Generator Maintenance Scheduling Method Using Transformation of Mixed Integer Polynomial Programming in a Power System Incorporating Demand Response," Energies, MDPI, vol. 12(9), pages 1-14, April.
    5. Maytham S. Ahmed & Azah Mohamed & Raad Z. Homod & Hussain Shareef, 2016. "Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy," Energies, MDPI, vol. 9(9), pages 1-20, September.
    6. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).
    7. Pesaran H.A., Mahmoud & Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Seyedi, Heresh, 2020. "A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks," Energy, Elsevier, vol. 209(C).
    8. Song, Kwonsik & Jang, Youjin & Park, Moonseo & Lee, Hyun-Soo & Ahn, Joseph, 2020. "Energy efficiency of end-user groups for personalized HVAC control in multi-zone buildings," Energy, Elsevier, vol. 206(C).
    9. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    10. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).
    11. Shirazi, Elham & Jadid, Shahram, 2017. "Cost reduction and peak shaving through domestic load shifting and DERs," Energy, Elsevier, vol. 124(C), pages 146-159.
    12. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    14. Mohamed Tolba & Hegazy Rezk & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2018. "A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids," Energies, MDPI, vol. 11(10), pages 1-34, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Liudong & Liu, Nian & Li, Chenchen & Wu, Lei & Chen, Yubing, 2021. "Multi-party stochastic energy scheduling for industrial integrated energy systems considering thermal delay and thermoelectric coupling," Applied Energy, Elsevier, vol. 304(C).
    2. Nicolai Lystbæk & Mikkel Gregersen & Hamid Reza Shaker, 2023. "Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    3. Jinhua Zhang & Liding Zhu & Shengchao Zhao & Jie Yan & Lingling Lv, 2023. "Optimal Configuration of Energy Storage Systems in High PV Penetrating Distribution Network," Energies, MDPI, vol. 16(5), pages 1-21, February.
    4. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    5. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    6. Xinyu Sun & Hao Wu & Siqi Guo & Lingwei Zheng, 2022. "Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming," Energies, MDPI, vol. 15(18), pages 1-17, September.
    7. Mohseni, Shayan & Pishvaee, Mir Saman, 2023. "Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization," Applied Energy, Elsevier, vol. 350(C).
    8. Monzur A. Imteaz & Hassaan Ahmad & Iqbal Hossain, 2023. "Pioneer Use of Pseudo Sub-Daily Timestep Model for Rainwater Harvesting Analysis: Acceptance over Hourly Model and Exploring Accuracy of Different Operating Algorithms," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    9. Chreim, Bashar & Esseghir, Moez & Merghem-Boulahia, Leila, 2022. "LOSISH—LOad Scheduling In Smart Homes based on demand response: Application to smart grids," Applied Energy, Elsevier, vol. 323(C).
    10. Niko Karhula & Seppo Sierla & Valeriy Vyatkin, 2021. "Validating the Real-Time Performance of Distributed Energy Resources Participating on Primary Frequency Reserves," Energies, MDPI, vol. 14(21), pages 1-19, October.
    11. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    12. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    13. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    14. He, Shuaijia & Gao, Hongjun & Tang, Zao & Chen, Zhe & Jin, Xiaolong & Liu, Junyong, 2023. "Worst CVaR based energy management for generalized energy storage enabled building-integrated energy systems," Renewable Energy, Elsevier, vol. 203(C), pages 255-266.
    15. Danish Khan & Pengfei Hu & Muhammad Waseem & Muhammad Yasir Ali Khan & Mustafa Tahir & Andres Annuk, 2022. "Practical Evaluation of Loss Reduction in Isolated Series Resonant Converter with Fixed Frequency Modulation," Energies, MDPI, vol. 15(16), pages 1-20, August.
    16. Mahmoud Aref & Almoataz Y. Abdelaziz & Zong Woo Geem & Junhee Hong & Farag K. Abo-Elyousr, 2023. "Oscillation Damping Neuro-Based Controllers Augmented Solar Energy Penetration Management of Power System Stability," Energies, MDPI, vol. 16(5), pages 1-21, March.
    17. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    18. Wang, Fei & Lu, Xiaoxing & Chang, Xiqiang & Cao, Xin & Yan, Siqing & Li, Kangping & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, Elsevier, vol. 238(PB).
    19. Khosravi, Nima & Baghbanzadeh, Rasoul & Oubelaid, Adel & Tostado-Véliz, Marcos & Bajaj, Mohit & Hekss, Zineb & Echalih, Salwa & Belkhier, Youcef & Houran, Mohamad Abou & Aboras, Kareem M., 2023. "A novel control approach to improve the stability of hybrid AC/DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    20. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    21. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    2. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    3. Homod, Raad Z. & Munahi, Basil Sh. & Mohammed, Hayder Ibrahim & Albadr, Musatafa Abbas Abbood & Abderrahmane, AISSA & Mahdi, Jasim M. & Ben Hamida, Mohamed Bechir & Alhasnawi, Bilal Naji & Albahri, A., 2024. "Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings," Applied Energy, Elsevier, vol. 356(C).
    4. Chreim, Bashar & Esseghir, Moez & Merghem-Boulahia, Leila, 2022. "LOSISH—LOad Scheduling In Smart Homes based on demand response: Application to smart grids," Applied Energy, Elsevier, vol. 323(C).
    5. Ghayour, Sepideh Saravani & Barforoushi, Taghi, 2022. "Optimal scheduling of electrical and thermal resources and appliances in a smart home under uncertainty," Energy, Elsevier, vol. 261(PA).
    6. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
    7. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    8. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
    9. Lee, Juyong & Cho, Youngsang, 2022. "Determinants of reserve margin volatility: A new approach toward managing energy supply and demand," Energy, Elsevier, vol. 252(C).
    10. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    11. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    12. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    14. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    15. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    16. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    17. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    18. Sharif Naser Makhadmeh & Mohammed Azmi Al-Betar & Mohammed A. Awadallah & Ammar Kamal Abasi & Zaid Abdi Alkareem Alyasseri & Iyad Abu Doush & Osama Ahmad Alomari & Robertas Damaševičius & Audrius Zaja, 2022. "A Modified Coronavirus Herd Immunity Optimizer for the Power Scheduling Problem," Mathematics, MDPI, vol. 10(3), pages 1-29, January.
    19. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    20. Spindler, Christian & Woll, Oliver & Schober, Dominik, 2018. "Sharing is not caring: Backward integration of consumers," ZEW Discussion Papers 18-006, ZEW - Leibniz Centre for European Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.