IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3164-d1680194.html
   My bibliography  Save this article

Bioaugmentation with Electroactive Microbes—A Promising Strategy for Improving Process Performances of Microbial Electrochemical Technologies

Author

Listed:
  • Riku Fujikawa

    (School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan)

  • Manami Hagiwara

    (School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan)

  • Keisuke Tomita

    (School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan)

  • Kazuya Watanabe

    (School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan)

Abstract

Microbial electrochemical technologies (METs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), show promise for sustainable energy generation from biomass waste and wastewater. However, further work is necessary for their practical use. In particular, it has been argued that process performances, such as those for organics removal and energy generation, should be substantially improved to catch up with those of existing processes, such as anaerobic digesters. Recent work has reported that bioaugmentation (BA) with electroactive microbes (EAMs) can significantly improve the performance of MFCs and MECs, while previous reports have also documented BA cases with limited impacts. In this article, after summarizing EAMs that have been isolated and characterized as possible BA agents, we comparatively analyze past BA trials for MET processes. Based on the information thus obtained, key factors that should be considered for successful BA are suggested.

Suggested Citation

  • Riku Fujikawa & Manami Hagiwara & Keisuke Tomita & Kazuya Watanabe, 2025. "Bioaugmentation with Electroactive Microbes—A Promising Strategy for Improving Process Performances of Microbial Electrochemical Technologies," Energies, MDPI, vol. 18(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3164-:d:1680194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    2. Dianne K. Newman & Roberto Kolter, 2000. "A role for excreted quinones in extracellular electron transfer," Nature, Nature, vol. 405(6782), pages 94-97, May.
    3. Kadier, Abudukeremu & Simayi, Yibadatihan & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Hamid, Aidil Abdul, 2014. "A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas," Renewable Energy, Elsevier, vol. 71(C), pages 466-472.
    4. Alexis Nzila & Shaikh Abdur Razzak & Jesse Zhu, 2016. "Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge," IJERPH, MDPI, vol. 13(9), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    2. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    3. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    4. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    5. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    6. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    7. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    8. Arshad, Muhammad & Ahmed, Sibtain, 2016. "Cogeneration through bagasse: A renewable strategy to meet the future energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 732-737.
    9. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.
    10. Alexis Nzila & Musa M. Musa, 2020. "Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene," IJERPH, MDPI, vol. 18(1), pages 1-24, December.
    11. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    12. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    13. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    14. Anser, Muhammad Khalid & Yousaf, Zahid & Zaman, Khalid & Nassani, Abdelmohsen A. & Alotaibi, Saad M. & Jambari, Hanifah & Khan, Aqeel & Kabbani, Ahmad, 2020. "Determination of resource curse hypothesis in mediation of financial development and clean energy sources: Go-for-green resource policies," Resources Policy, Elsevier, vol. 66(C).
    15. Arkadiusz T. Borowiec, 2023. "Modeling Activities Related to Improving Energy Efficiency in the Public Procurement Process in Poland," Energies, MDPI, vol. 16(6), pages 1-12, March.
    16. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    17. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    18. Njakou Djomo, S. & El Kasmioui, O. & De Groote, T. & Broeckx, L.S. & Verlinden, M.S. & Berhongaray, G. & Fichot, R. & Zona, D. & Dillen, S.Y. & King, J.S. & Janssens, I.A. & Ceulemans, R., 2013. "Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation," Applied Energy, Elsevier, vol. 111(C), pages 862-870.
    19. Jannelli, Nicole & Anna Nastro, Rosa & Cigolotti, Viviana & Minutillo, Mariagiovanna & Falcucci, Giacomo, 2017. "Low pH, high salinity: Too much for microbial fuel cells?," Applied Energy, Elsevier, vol. 192(C), pages 543-550.
    20. Xian Liu, 2022. "Analysis of Crop Sustainability Production Potential in Northwest China: Water Resources Perspective," Agriculture, MDPI, vol. 12(10), pages 1-17, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3164-:d:1680194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.