IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2758-d1664656.html
   My bibliography  Save this article

Hybrid Fuels for CI Engines with Biofuel Hydrogen Ammonia and Synthetic Fuel Blends

Author

Listed:
  • Ramozon Khujamberdiev

    (Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea)

  • Haeng Muk Cho

    (Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea)

Abstract

The transition to sustainable energy systems necessitates the development of cleaner fuel alternatives for compression ignition (CI) engines, which continue to play a vital role in transportation and power generation. This study explores the potential of hybrid fuel blends comprising biofuels, hydrogen, ammonia, and synthetic fuels to enhance engine performance while minimizing environmental impact. By reviewing recent advancements, the paper analyzes the combustion characteristics, emissions behavior, and feasibility of various fuel combinations. Biofuel–hydrogen blends improve flame speed and reduce carbon emissions, while ammonia offers zero-carbon combustion when paired with more reactive fuels, like biodiesel or hydrogen. Synthetic fuels, particularly those derived from renewable sources, provide high-quality combustion with low particulate emissions. Hybridization strategies leverage the strengths of each component fuel, resulting in synergistic effects that enhance thermal efficiency, reduce greenhouse gas emissions, and support the continued use of CI engines in a carbon-constrained future. The findings indicate that with proper optimization of fuel formulations and engine technologies, hybrid fuels can play a key role in achieving sustainability goals and reducing fossil fuel dependency.

Suggested Citation

  • Ramozon Khujamberdiev & Haeng Muk Cho, 2025. "Hybrid Fuels for CI Engines with Biofuel Hydrogen Ammonia and Synthetic Fuel Blends," Energies, MDPI, vol. 18(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2758-:d:1664656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mateusz Zbikowski & Andrzej Teodorczyk, 2025. "Machine Learning for Internal Combustion Engine Optimization with Hydrogen-Blended Fuels: A Literature Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
    2. Yang, Ruomiao & Shang, Tansu & Li, Lingmin & Liu, Junheng & Xie, Tianfang & Liu, Zhentao & Liu, Jinlong, 2024. "The mechanism of the increased ratio of nitrogen dioxide to nitrogen oxides in methanol/diesel dual fuel engines," Energy, Elsevier, vol. 312(C).
    3. Wenbo Ai & Haeng Muk Cho, 2024. "Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review," Energies, MDPI, vol. 17(19), pages 1-25, September.
    4. Ramozon Khujamberdiev & Haengmuk Cho, 2023. "Impact of Biodiesel Blending on Emission Characteristics of One-Cylinder Engine Using Waste Swine Oil," Energies, MDPI, vol. 16(14), pages 1-14, July.
    5. Fangyuan Zheng & Haeng Muk Cho, 2025. "Study on Biodiesel Production: Feedstock Evolution, Catalyst Selection, and Influencing Factors Analysis," Energies, MDPI, vol. 18(10), pages 1-26, May.
    6. Haoyu Yuan & Takuma Tsukuda & Yurui Yang & Gen Shibata & Yoshimitsu Kobashi & Hideyuki Ogawa, 2022. "Effects of Chemical Compositions and Cetane Number of Fischer–Tropsch Fuels on Diesel Engine Performance," Energies, MDPI, vol. 15(11), pages 1-17, May.
    7. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    8. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.
    9. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    10. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    11. Sonia Dell’Aversano & Carlo Villante & Katia Gallucci & Giuseppina Vanga & Andrea Di Giuliano, 2024. "E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition," Energies, MDPI, vol. 17(16), pages 1-43, August.
    12. Yadav, Prem shanker & Said, Zafar & Gautam, Raghvendra & Caliskan, Hakan & Wu, Hongwei, 2024. "Impact of hydrogen induction on atomization combustion performance and emissions in diesel engines fueled with heated biodiesel blends," Energy, Elsevier, vol. 313(C).
    13. Sofia Pinheiro Melo & Alexander Barke & Felipe Cerdas & Christian Thies & Mark Mennenga & Thomas S. Spengler & Christoph Herrmann, 2020. "Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    14. Duraisamy, Ganesh & Rangasamy, Murugan & Govindan, Nagarajan, 2020. "A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 542-556.
    15. Fangyuan Zheng & Haeng Muk Cho, 2024. "The Effect of Different Mixing Proportions and Different Operating Conditions of Biodiesel Blended Fuel on Emissions and Performance of Compression Ignition Engines," Energies, MDPI, vol. 17(2), pages 1-15, January.
    16. Behdad Shadidi & Gholamhassan Najafi & Talal Yusaf, 2021. "A Review of Hydrogen as a Fuel in Internal Combustion Engines," Energies, MDPI, vol. 14(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz M. Szymański & Bogdan Wyrwas & Klaudia Strugarek & Mikołaj Klekowicki & Malwina Nowak & Aleksander Ludwiczak & Alicja Szymańska, 2025. "Multi-Criteria Analysis in the Selection of Alternative Fuels for Pulse Engines in the Aspect of Environmental Protection," Energies, MDPI, vol. 18(14), pages 1-31, July.
    2. Fangyuan Zheng & Haeng Muk Cho, 2024. "Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review," Energies, MDPI, vol. 17(24), pages 1-23, December.
    3. Enzo Galloni & Davide Lanni & Gustavo Fontana & Gabriele D’Antuono & Simone Stabile, 2022. "Performance Estimation of a Downsized SI Engine Running with Hydrogen," Energies, MDPI, vol. 15(13), pages 1-12, June.
    4. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    5. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    6. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    7. Upendra Rajak & Abhishek Dasore & Prem Kumar Chaurasiya & Tikendra Nath Verma & Prerana Nashine & Anil Kumar, 2023. "Effects of microalgae -ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 1-22, January.
    8. Kwonwoo Jang & Jeonghyeon Yang & Beomsoo Kim & Jaesung Kwon, 2024. "Effects of Decanol Blended Diesel Fuel on Engine Efficiency and Pollutant Emissions," Energies, MDPI, vol. 17(24), pages 1-17, December.
    9. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    10. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    11. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    12. Oleg Bazaluk & Valerii Havrysh & Vitalii Nitsenko & Tomas Baležentis & Dalia Streimikiene & Elena A. Tarkhanova, 2020. "Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China," Energies, MDPI, vol. 13(12), pages 1-25, June.
    13. Jowkar, Saeed & Zhang, Hengming & Shen, Xing, 2025. "Ammonia/syngas combustion in a premixed micro-gas turbine: LES-FGM investigation on flame dynamics, stability, and emission control," Energy, Elsevier, vol. 320(C).
    14. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).
    15. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    16. Paweł Mazuro & Barbara Makarewicz, 2020. "The Potential of Wobble Plate Opposed Piston Axial Engines for Increased Efficiency," Energies, MDPI, vol. 13(21), pages 1-22, October.
    17. Jia, Dongdong & Qiao, Junhao & Liu, Jingping & Fu, Jianqin & Wang, Rumin & Li, Yangyang & Duan, Xiongbo, 2025. "Experiment and simulation analysis of the effects of different asynchronous variable intake valve phase differences on the in-cylinder flow, combustion and performance characteristics of high compress," Energy, Elsevier, vol. 320(C).
    18. Hazar, Hanbey & Tekdogan, Remziye & Sevinc, Huseyin, 2021. "Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine," Energy, Elsevier, vol. 236(C).
    19. Baixun Sun & Guogang Yang & Jihui Li & Xinyu Liu & Yinhui Sun, 2025. "Study on the Diffusion Mechanisms of Methanol Leakage in Confined Spaces," Sustainability, MDPI, vol. 17(9), pages 1-19, April.
    20. Ekici, Selcuk & Ayar, Murat & Orhan, Ilkay & Karakoc, Tahir Hikmet, 2024. "Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft," Energy, Elsevier, vol. 295(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2758-:d:1664656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.