IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2758-d1664656.html
   My bibliography  Save this article

Hybrid Fuels for CI Engines with Biofuel Hydrogen Ammonia and Synthetic Fuel Blends

Author

Listed:
  • Ramozon Khujamberdiev

    (Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea)

  • Haeng Muk Cho

    (Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea)

Abstract

The transition to sustainable energy systems necessitates the development of cleaner fuel alternatives for compression ignition (CI) engines, which continue to play a vital role in transportation and power generation. This study explores the potential of hybrid fuel blends comprising biofuels, hydrogen, ammonia, and synthetic fuels to enhance engine performance while minimizing environmental impact. By reviewing recent advancements, the paper analyzes the combustion characteristics, emissions behavior, and feasibility of various fuel combinations. Biofuel–hydrogen blends improve flame speed and reduce carbon emissions, while ammonia offers zero-carbon combustion when paired with more reactive fuels, like biodiesel or hydrogen. Synthetic fuels, particularly those derived from renewable sources, provide high-quality combustion with low particulate emissions. Hybridization strategies leverage the strengths of each component fuel, resulting in synergistic effects that enhance thermal efficiency, reduce greenhouse gas emissions, and support the continued use of CI engines in a carbon-constrained future. The findings indicate that with proper optimization of fuel formulations and engine technologies, hybrid fuels can play a key role in achieving sustainability goals and reducing fossil fuel dependency.

Suggested Citation

  • Ramozon Khujamberdiev & Haeng Muk Cho, 2025. "Hybrid Fuels for CI Engines with Biofuel Hydrogen Ammonia and Synthetic Fuel Blends," Energies, MDPI, vol. 18(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2758-:d:1664656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2758/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2758-:d:1664656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.