IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1391-d1610220.html
   My bibliography  Save this article

Machine Learning for Internal Combustion Engine Optimization with Hydrogen-Blended Fuels: A Literature Review

Author

Listed:
  • Mateusz Zbikowski

    (Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

  • Andrzej Teodorczyk

    (Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

This study explores the potential of hydrogen-enriched internal combustion engines (H2ICEs) as a sustainable alternative to fossil fuels. Hydrogen offers advantages such as high combustion efficiency and zero carbon emissions, yet challenges related to NO x formation, storage, and specialized modifications persist. Machine learning (ML) techniques, including artificial neural networks (ANNs) and XGBoost, demonstrate strong predictive capabilities in optimizing engine performance and emissions. However, concerns regarding overfitting and data representativeness must be addressed. Integrating AI-driven strategies into electronic control units (ECUs) can facilitate real-time optimization. Future research should focus on infrastructure improvements, hybrid energy solutions, and policy support. The synergy between hydrogen fuel and ML optimization has the potential to revolutionize internal combustion engine technology for a cleaner and more efficient future.

Suggested Citation

  • Mateusz Zbikowski & Andrzej Teodorczyk, 2025. "Machine Learning for Internal Combustion Engine Optimization with Hydrogen-Blended Fuels: A Literature Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1391-:d:1610220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefania Falfari & Giulio Cazzoli & Valerio Mariani & Gian Marco Bianchi, 2023. "Hydrogen Application as a Fuel in Internal Combustion Engines," Energies, MDPI, vol. 16(6), pages 1-13, March.
    2. Javed, Syed & Baig, Rahmath Ulla & Murthy, Y.V.V. Satyanarayana, 2018. "Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model," Energy, Elsevier, vol. 160(C), pages 774-782.
    3. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    4. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    5. Mallesh B. Sanjeevannavar & Nagaraj R. Banapurmath & V. Dananjaya Kumar & Ashok M. Sajjan & Irfan Anjum Badruddin & Chandramouli Vadlamudi & Sanjay Krishnappa & Sarfaraz Kamangar & Rahmath Ulla Baig &, 2023. "Machine Learning Prediction and Optimization of Performance and Emissions Characteristics of IC Engine," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    2. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    3. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    4. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    5. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    6. Hazar, Hanbey & Tekdogan, Remziye & Sevinc, Huseyin, 2021. "Determination of the effects of oxygen-enriched air with the help of zeolites on the exhaust emission and performance of a diesel engine," Energy, Elsevier, vol. 236(C).
    7. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    8. Krzysztof Jastrzębski & Marian Cłapa & Łukasz Kaczmarek & Witold Kaczorowski & Anna Sobczyk-Guzenda & Hieronim Szymanowski & Piotr Zawadzki & Piotr Kula, 2024. "Spatial Graphene Structures with Potential for Hydrogen Storage," Energies, MDPI, vol. 17(10), pages 1-18, May.
    9. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    10. Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
    11. Seetharaman, Sathyanarayanan & Sivan, Suresh & Dhamodaran, Gopinath & Kannan, Gopi & Sivalingam, Suyambazhahan & Kumar, K.R. Suresh & Babu, M. Dinesh, 2024. "Catalytic converter performance prediction and engine optimization when powered by diisopropyl ether/gasoline blends: Combined application of response surface methodology and artificial neural network," Energy, Elsevier, vol. 308(C).
    12. Alejandro Garcia-Basurto & Angel Perez-Cruz & Aurelio Dominguez-Gonzalez & Juan J. Saucedo-Dorantes, 2024. "Modeling and Prediction of Carbon Monoxide during the Start-Up in ICE through VARX Regression," Energies, MDPI, vol. 17(11), pages 1-21, May.
    13. Sun, Ping & Zhang, Jufang & Dong, Wei & Li, Decheng & Yu, Xiumin, 2023. "Prediction of oxygen-enriched combustion and emission performance on a spark ignition engine using artificial neural networks," Applied Energy, Elsevier, vol. 348(C).
    14. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    15. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    16. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).
    17. Wu, Zheng & Zhang, Yue & Dong, Ze, 2024. "NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants," Energy, Elsevier, vol. 305(C).
    18. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
    19. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Salam, Hamza Ahmad & Ma, Fanhua, 2024. "An experimental study of knock analysis of HCNG fueled SI engine by different methods and prediction of knock intensity by particle swarm optimization-support vector machine," Energy, Elsevier, vol. 309(C).
    20. Ruomiao Yang & Tianfang Xie & Zhentao Liu, 2022. "The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines," Energies, MDPI, vol. 15(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1391-:d:1610220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.