IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2680-d1661803.html
   My bibliography  Save this article

A Comprehensive Analysis of Imbalance Signal Prediction in the Japanese Electricity Market Using Machine Learning Techniques

Author

Listed:
  • Kaiyao Jiang

    (Graduate School of Business Sciences, University of Tsukuba, Tokyo 112-0012, Japan)

  • Yuji Yamada

    (Institute of Business Sciences, University of Tsukuba, Tokyo 112-0012, Japan)

Abstract

Power system imbalances pose significant challenges to maintaining grid stability and ensuring efficient market performance, particularly in the context of the Japanese electricity market. The primary drivers of these imbalances are identified as the nonlinear responses of power generation and consumer electricity demand to uncertain variables such as temperature and solar radiation, in addition to complex factors such as planned generator outages and operational constraints. Consequently, the prediction of imbalance signals using linear models is inherently challenging and requires the adaptation of more advanced methods in practice. This study comprehensively analyzes imbalance signal dynamics and develops practical forecasting tools using Machine Learning (ML) techniques. By incorporating a diverse range of features—including lagged imbalance data, weather forecast errors specific to Japan, and temporal patterns—we demonstrate that the prediction accuracy of imbalance signals is significantly improved compared to a baseline reflecting random forecasts based on class distribution observed during the initial training period. Furthermore, the proposed approach identifies the key drivers of hourly imbalance signals, while leveraging out-of-sample forecasting models. Based on these findings, we conclude that the use of multiple predictive models enhances the robustness and reliability of our forecasts, offering actionable tools for improving forecasting accuracy in real-world operations and contributing to a more stable and efficient electricity market.

Suggested Citation

  • Kaiyao Jiang & Yuji Yamada, 2025. "A Comprehensive Analysis of Imbalance Signal Prediction in the Japanese Electricity Market Using Machine Learning Techniques," Energies, MDPI, vol. 18(11), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2680-:d:1661803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2680/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2680-:d:1661803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.