IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2631-d1659605.html
   My bibliography  Save this article

Green Hydrogen Production from Biogas or Landfill Gas by Steam Reforming or Dry Reforming: Specific Production and Energy Requirements

Author

Listed:
  • Dhruv Singh

    (Engineering Department, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

  • Piero Sirini

    (Civil and Environmental Engineering Department, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy)

  • Lidia Lombardi

    (Engineering Department, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

Abstract

Biogas is a crucial renewable energy source for green hydrogen (H 2 ) production, reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently, methane reforming dominates H 2 production to meet growing global demand, with biogas/landfill gas (LFG) reform offering a promising alternative. This study provides a comprehensive simulation-based evaluation of Steam Methane Reforming (SMR) and Dry Methane Reforming (DMR) of biogas/LFG, using Aspen Plus. Simulations were conducted under varying operating conditions, including steam-to-carbon (S/C) for SMR and steam-to-carbon monoxide (S/CO) ratios for DMR, reforming temperatures, pressures, and LFG compositions, to optimize H 2 yield and process efficiency. The comparative study showed that SMR attains higher specific H 2 yields (0.14–0.19 kgH 2 /Nm 3 ), with specific energy consumption between 0.048 and 0.075 MWh/kg of H 2 , especially at increased S/C ratios. DMR produces less H 2 than SMR (0.104–0.136 kg H 2 /Nm 3 ) and requires higher energy inputs (0.072–0.079 MWh/kg H 2 ), making it less efficient. Both processes require an additional 1.4–2.1 Nm 3 of biogas/LFG per Nm 3 of feed for energy. These findings provide key insights for improving biogas-based H 2 production for sustainable energy, with future work focusing on techno–economic and environmental assessments to evaluate its feasibility, scalability, and industrial application.

Suggested Citation

  • Dhruv Singh & Piero Sirini & Lidia Lombardi, 2025. "Green Hydrogen Production from Biogas or Landfill Gas by Steam Reforming or Dry Reforming: Specific Production and Energy Requirements," Energies, MDPI, vol. 18(10), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2631-:d:1659605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    2. Marcin Pajak & Grzegorz Brus & Shinji Kimijima & Janusz S. Szmyd, 2023. "Enhancing Hydrogen Production from Biogas through Catalyst Rearrangements," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Abd, Ammar Ali & Othman, Mohd Roslee & Majdi, Hasan Sh & Helwani, Zuchra, 2023. "Green route for biomethane and hydrogen production via integration of biogas upgrading using pressure swing adsorption and steam-methane reforming process," Renewable Energy, Elsevier, vol. 210(C), pages 64-78.
    4. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    6. Mikhail Fedorov & Vladimir Maslikov & Vadim Korablev & Natalia Politaeva & Aleksandr Chusov & Dmitriy Molodtsov, 2022. "Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-11, October.
    7. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    8. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Dhruv Singh & Piero Sirini & Lidia Lombardi, 2024. "Review of Reforming Processes for the Production of Green Hydrogen from Landfill Gas," Energies, MDPI, vol. 18(1), pages 1-35, December.
    10. Artur Wodołażski & Małgorzata Magdziarczyk & Adam Smoliński, 2023. "Techno-Economic Analysis of Hydrogen Production from Swine Manure Biogas via Steam Reforming in Pilot-Scale Installation," Energies, MDPI, vol. 16(17), pages 1-13, September.
    11. Barelli, L. & Bidini, G. & Gallorini, F. & Servili, S., 2008. "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review," Energy, Elsevier, vol. 33(4), pages 554-570.
    12. Akira Nishimura & Souta Yamada & Ryoma Ichii & Mizuki Ichikawa & Taisei Hayakawa & Mohan Lal Kolhe, 2024. "Hydrogen Yield Enhancement in Biogas Dry Reforming with a Ni/Cr Catalyst: A Numerical Study," Energies, MDPI, vol. 17(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Naquash, Ahmad & Agarwal, Neha & Nizami, Muhammad & Nga, Nguyen Nhu & Aziz, Muhammad & Lee, Moonyong, 2024. "Unlocking the potential of cryogenic biogas upgrading technologies integrated with bio-LNG production: A comparative assessment," Applied Energy, Elsevier, vol. 371(C).
    3. Dhruv Singh & Piero Sirini & Lidia Lombardi, 2024. "Review of Reforming Processes for the Production of Green Hydrogen from Landfill Gas," Energies, MDPI, vol. 18(1), pages 1-35, December.
    4. Godoy, Verónica & Martín-Lara, María Ángeles & Garcia-Garcia, Guillermo & Arjandas, Sunil & Calero, Mónica, 2024. "Environmental impact assessment of the production of biomethane from landfill biogas and its use as vehicle fuel," Renewable Energy, Elsevier, vol. 237(PB).
    5. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    6. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    7. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    8. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    9. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    10. Zhou, Jianli & Chen, Zhuohao & Wu, Shuxian & Yang, Cheng & Wang, Yaqi & Wu, Yunna, 2024. "Potential assessment and development obstacle analysis of CCUS layout in China: A combined interpretive model based on GIS-DEMATEL-ISM," Energy, Elsevier, vol. 310(C).
    11. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    12. Cormos, Calin-Cristian & Dragan, Mihaela & Petrescu, Letitia & Cormos, Ana-Maria & Dragan, Simion & Bathori, Arthur-Maximilian & Galusnyak, Stefan-Cristian, 2024. "Synthetic natural gas (SNG) production by biomass gasification with CO2 capture: Techno-economic and life cycle analysis (LCA)," Energy, Elsevier, vol. 312(C).
    13. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    14. Po-Chun Han & Chia-Hui Chuang & Shang-Wei Lin & Xiangmei Xiang & Zaoming Wang & Mako Kuzumoto & Shun Tokuda & Tomoki Tateishi & Alexandre Legrand & Min Ying Tsang & Hsiao-Ching Yang & Kevin C.-W. Wu &, 2024. "Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Shi, Zhiwei & Tian, Xinghua & Peng, Qingguo & Huang, Zhixin & Teng, Peng & Yin, Ruixue, 2025. "Effects analysis of hydrogen production from methanol reforming of dual-U reactor for fuel-cell hybrid electric vehicles," Energy, Elsevier, vol. 318(C).
    16. Li, Yuwan & Yuen, Kum Fai & Zhou, Yusheng, 2024. "Risk assessment of achieving greenhouse gas emission reduction target in the maritime industry," Transport Policy, Elsevier, vol. 155(C), pages 29-46.
    17. Dang, Chengxiong & Xia, Huanhuan & Yuan, Shuting & Wei, Xingchuan & Cai, Weiquan, 2022. "Green hydrogen production from sorption-enhanced steam reforming of biogas over a Pd/Ni–CaO-mayenite multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 314-322.
    18. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    19. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    20. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2631-:d:1659605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.