IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222028869.html
   My bibliography  Save this article

Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers

Author

Listed:
  • Ding, Haoran
  • Tong, Sirui
  • Qi, Zhifu
  • Liu, Fei
  • Sun, Shien
  • Han, Long

Abstract

Chemical-looping steam methane reforming (CL-SMR) is a promising technology to achieve the co-production of syngas and hydrogen. The performance of oxygen carriers in the partial oxidation of methane stage is crucial for the composition of syngas products. In this study, the performance of BaCoO3/CeO2 monolithic oxygen carrier for syngas production was investigated. The result of characterizations suggested that the oxygen carriers maintain the ideal crystal structures, the macroporous layer of BaCoO3/CeO2 adhered to monolith achieved a good energy supply and a high gas-solid contact area. To determine the reaction heat of partial oxidation of methane, the standard enthalpy of formation of BaCoO3 was measured by DSC, the obtained value was −957.794 kJ/mol. Based on the experimental result, a kinetic model of partial oxidation of methane was established, the obtained value of A and Ea were 75.902 and 74.772 kJ/mol, respectively. The effect of geometry on reaction performance was investigated by numerical simulation. It suggested increasing number of channel faces could improve the uniformity of reaction, the uniform reaction along the channel was beneficial to control the extent of reaction. Monolithic oxygen carriers need a proper geometry design to find a compromise between the heat storage for temperature control and reaction surface area.

Suggested Citation

  • Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028869
    DOI: 10.1016/j.energy.2022.126000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flores-Lasluisa, J.X. & Huerta, F. & Cazorla-Amorós, D. & Morallón, E., 2022. "Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction," Energy, Elsevier, vol. 247(C).
    2. Ana Gonçalves & Jaime Filipe Puna & Luís Guerra & José Campos Rodrigues & João Fernando Gomes & Maria Teresa Santos & Diogo Alves, 2019. "Towards the Development of Syngas/Biomethane Electrolytic Production, Using Liquefied Biomass and Heterogeneous Catalyst," Energies, MDPI, vol. 12(19), pages 1-21, October.
    3. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    4. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    5. Chein, Rei-Yu & Lu, Cheng-Yang & Chen, Wei-Hsin, 2022. "Syngas production via chemical looping reforming using methane-based feed and NiO/Al2O3 oxygen carrier," Energy, Elsevier, vol. 250(C).
    6. Korus, Agnieszka & Klimanek, Adam & Sładek, Sławomir & Szlęk, Andrzej & Tilland, Airy & Bertholin, Stéphane & Haugen, Nils Erland L., 2021. "Kinetic parameters of petroleum coke gasification for modelling chemical-looping combustion systems," Energy, Elsevier, vol. 232(C).
    7. Barelli, L. & Bidini, G. & Gallorini, F. & Servili, S., 2008. "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review," Energy, Elsevier, vol. 33(4), pages 554-570.
    8. Li, Lin & Song, Yongchen & Jiang, Bo & Wang, Kaiqiang & Zhang, Qian, 2017. "A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite," Energy, Elsevier, vol. 131(C), pages 58-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Qiuwan & Shao, Zicheng & Li, Shian & Yang, Guogang & Sunden, Bengt, 2023. "Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming," Energy, Elsevier, vol. 268(C).
    2. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    3. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    4. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    5. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    6. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    7. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    8. Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.
    9. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    10. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    11. Hong, Sung Kook & Dong, Sang Keun & Han, Jeong Ok & Lee, Joong Seong & Lee, Young Chul, 2013. "Numerical study of effect of operating and design parameters for design of steam reforming reactor," Energy, Elsevier, vol. 61(C), pages 410-418.
    12. Tang, Xin-Yuan & Yang, Wei-Wei & Ma, Xu & Cao, Xiangkun Elvis, 2023. "An integrated modeling method for membrane reactors and optimization study of operating conditions," Energy, Elsevier, vol. 268(C).
    13. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    14. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    15. Park, Hoyoung & Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible thermochemical process for methanol production from kenaf," Energy, Elsevier, vol. 230(C).
    16. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    17. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    18. Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
    19. Liu, Shuanghui & Rui, Qixuan & Chen, Zongqi & Zhang, Lihui & Duan, Feng, 2023. "A comparative study of the reaction mechanism for deep reduction hydrogen production using two special steel solid wastes and a chemical looping hydrogen production scheme," Energy, Elsevier, vol. 284(C).
    20. Jin, Jian & Wang, Hongsheng & Shen, Yili & Shu, Ziyun & Liu, Taixiu & Li, Wenjia, 2023. "Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.