IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics036054422101183x.html
   My bibliography  Save this article

Kinetic parameters of petroleum coke gasification for modelling chemical-looping combustion systems

Author

Listed:
  • Korus, Agnieszka
  • Klimanek, Adam
  • Sładek, Sławomir
  • Szlęk, Andrzej
  • Tilland, Airy
  • Bertholin, Stéphane
  • Haugen, Nils Erland L.

Abstract

One of the best low-cost approaches for capturing carbon dioxide from the combustion of solid fuels is chemical looping combustion (CLC) technology, where the processes of fuel oxidation and extraction of oxygen from the air are split in two separate reactors. In order to model the petroleum coke (petcoke) conversion in a CLC method, detailed knowledge about the reactions of pet-coke with O2, CO2, and H2O at temperatures between 750 and 1100 °C is required. Due to the lack of sufficient literature data, in this paper, the reactivity of these reactions is investigated in a custom-built test rig that enabled measurements of the mass loss of the fuel sample and the composition of the released gases. The Avrami, Random Pore, Shrinking Core, and Hybrid models were applied to the experimental results to determine the kinetic parameters of petcoke gasification. At temperatures up to 1000 °C, the reaction with CO2 was found to be negligibly slow. An activation energy of 103.91 kJ/mol was obtained for petcoke gasification in 10–40 vol% of H2O, while a value of 15.87 kJ/mol was found for oxidation in 2–4 vol% O2, as described by best-fitting models, i.e. Hybrid and Random Pore models, respectively.

Suggested Citation

  • Korus, Agnieszka & Klimanek, Adam & Sładek, Sławomir & Szlęk, Andrzej & Tilland, Airy & Bertholin, Stéphane & Haugen, Nils Erland L., 2021. "Kinetic parameters of petroleum coke gasification for modelling chemical-looping combustion systems," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s036054422101183x
    DOI: 10.1016/j.energy.2021.120935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101183X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    2. Zhan, Xiuli & Zhou, ZhiJie & Wang, Fuchen, 2010. "Catalytic effect of black liquor on the gasification reactivity of petroleum coke," Applied Energy, Elsevier, vol. 87(5), pages 1710-1715, May.
    3. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    2. Gao, Zhuwei & Li, Chengxin & Qi, Xinyu & Wei, Yaodong & Liu, Zhongxin, 2022. "Flow analysis on carbonaceous deposition of heavy oil droplets and catalyst particles for coking formation process," Energy, Elsevier, vol. 260(C).
    3. Liyan Sun & Junjie Lin & Dali Kong & Kun Luo & Jianren Fan, 2022. "Numerical Simulation of a 10 kW Gas-Fueled Chemical Looping Combustion Unit," Energies, MDPI, vol. 15(6), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    2. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    3. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    5. Jia, Wenlong & Yang, Fan & Li, Changjun & Huang, Ting & Song, Shuoshuo, 2021. "A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa," Energy, Elsevier, vol. 230(C).
    6. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    7. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    8. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    10. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    12. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    13. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    14. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    15. Kang, Jun & Zhao, Lihui & Li, Weiwei & Song, Yuncai, 2022. "Artificial neural network model of co-gasification of petroleum coke with coal or biomass in bubbling fluidized bed," Renewable Energy, Elsevier, vol. 194(C), pages 359-365.
    16. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    17. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    18. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    19. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    20. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s036054422101183x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.