IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2416-d1651562.html
   My bibliography  Save this article

Reducing the Peak Power Demand and Setting the Proper Operating Regimes of Electrical Energy Devices in an Industrial Factory Using a Multi-Agent System—The Solutions of the DIEGO Project

Author

Listed:
  • Łukasz Rokicki

    (Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland)

  • Mirosław Parol

    (Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland)

  • Piotr Pałka

    (Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19 Street, 00-665 Warsaw, Poland)

  • Marcin Kopyt

    (Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland)

Abstract

Reducing the peak power demand at the level of a considered factory and setting the proper operating regimes of electrical devices located in a factory are the problems raised in this paper. These are essential challenges in industrial facilities, especially when existing highly variable loads for power demand, highly variable renewable sources for power generation, and electrical energy storage systems are considered. Appropriate studies relating to this question were performed within the DIEGO international research project (Digital Energy Path for Planning and Operation of Sustainable Grid, Products, and Society). First, the paper presents the technical characteristics of the electric power grid in the considered factory and analyses the results of the measurements performed in the scope of the load and generation of electrical energy in the factory. Next, the paper presents considered preventive measures for limiting peak electric loads at the industrial enterprise level and describes the results of the effectiveness evaluation of the defined preventive measures. The issue of setting the proper operating regimes for electrical devices installed in the factory is also presented. Multi-agent systems have been implemented for this purpose. The paper presents and discusses the results of the implementation.

Suggested Citation

  • Łukasz Rokicki & Mirosław Parol & Piotr Pałka & Marcin Kopyt, 2025. "Reducing the Peak Power Demand and Setting the Proper Operating Regimes of Electrical Energy Devices in an Industrial Factory Using a Multi-Agent System—The Solutions of the DIEGO Project," Energies, MDPI, vol. 18(10), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2416-:d:1651562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soud K. Al-Thani & Alexandre Amato & Muammer Koç & Sami G. Al-Ghamdi, 2019. "Urban Sustainability and Livability: An Analysis of Doha’s Urban-form and Possible Mitigation Strategies," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    2. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon Pawlak & Mariola Saternus & Krzysztof Nowacki, 2025. "Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes," Energies, MDPI, vol. 18(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    3. Qizhen Wang & Rong Wang & Suxia Liu, 2024. "The reverse technology spillover effect of outward foreign direct investment, energy efficiency and carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17013-17035, July.
    4. Di Foggia, Giacomo & Beccarello, Massimo, 2024. "Decarbonization in the European Steel Industry: Strategies, Risks, and Commitments," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Articles .
    5. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    6. Jana Gerta Backes & Julian Suer & Nils Pauliks & Sabrina Neugebauer & Marzia Traverso, 2021. "Life Cycle Assessment of an Integrated Steel Mill Using Primary Manufacturing Data: Actual Environmental Profile," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    7. Massimiliano Mazzanti & Ugo Rizzo, 2014. "Moving'diversely'towards'the'green'economy.'CO2'abating'techno organisational'trajectories'and'environmental'policy'in'EU'sectors," SEEDS Working Papers 0914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    8. Abu Yousuf & Md Shahadat Hossain & Nishat Paul & Md Woashib Shikder & Deepak Kumar & Domenico Pirozzi & Ahmed Nazmus Sakib & Pejman Kazempoor, 2023. "Process Integration Approach to the Methanol (MeOH) Production Variability from Syngas and Industrial Waste Gases," Energies, MDPI, vol. 16(18), pages 1-24, September.
    9. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    10. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
    11. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    12. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    13. Silvia H. Bonilla & Helton R. O. Silva & Marcia Terra da Silva & Rodrigo Franco Gonçalves & José B. Sacomano, 2018. "Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    14. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    15. Senthil Sundaramoorthy & Dipti Kamath & Sachin Nimbalkar & Christopher Price & Thomas Wenning & Joseph Cresko, 2023. "Energy Efficiency as a Foundational Technology Pillar for Industrial Decarbonization," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    16. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    17. repec:osf:socarx:4csq3_v1 is not listed on IDEAS
    18. Dal Magro, Fabio & Jimenez-Arreola, Manuel & Romagnoli, Alessandro, 2017. "Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations," Applied Energy, Elsevier, vol. 208(C), pages 972-985.
    19. Pusnik, M. & Al-Mansour, F. & Sucic, B. & Cesen, M., 2017. "Trends and prospects of energy efficiency development in Slovenian industry," Energy, Elsevier, vol. 136(C), pages 52-62.
    20. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    21. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2416-:d:1651562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.