IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2058-d1383436.html
   My bibliography  Save this article

Analyzing the Effects of Atmospheric Turbulent Fluctuations on the Wake Structure of Wind Turbines and Their Blade Vibrational Dynamics

Author

Listed:
  • Alayna Farrell

    (Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA)

  • Fernando Ponta

    (Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA)

  • Apurva Baruah

    (Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA)

Abstract

In recent trends, a rising demand for renewable energy has driven wind turbines to larger proportions, where lighter blade designs are often adopted to reduce the costs associated with logistics and production. This causes modern utility-scale wind turbine blades to be inherently more flexible, and their amplified aeroelastic sensitivity results in complex multi-physics reactions to variant atmospheric conditions, including dynamic patterns of aerodynamic loading at the rotor and vortex structure evolutions within the wake. In this paper, we analyze the influence of inflow variance for wind turbines with large, flexible rotors through simulations of the National Rotor Testbed (NRT) turbine, located at Sandia National Labs’ Scaled Wind Farm Technology (SWiFT) facility in Lubbock, Texas. The Common Ordinary Differential Equation Framework ( CODEF ) modeling suite is used to simulate wind turbine aeroelastic oscillatory behavior and wind farm vortex wake interactions for a range of flexible NRT blade variations, operating in differing conditions of variant atmospheric flow. CODEF solutions of turbine operation in Steady-In-The-Average (SITA) wind conditions are compared to SITA wind conditions featuring a controlled gust-like pulse overimposed, to isolate the effects of typical wind fluctuations. Finally, simulations of realistic time-varying wind conditions from SWiFT meteorological tower measurements are compared to the solutions of SITA wind conditions. These increasingly complex atmospheric inflow variations are tested to show the differing effects evoked by various patterns of spatiotemporal atmospheric flow fluctuations. An analysis is presented for solutions of wind turbine aeroelastic response and vortex wake evolution, to elucidate the consequences of variant inflow, which pertain to wind turbine dynamics at an individual and farm-collective scale. The comparisons of simulated farm flow for SITA and measured fluctuating wind conditions show that certain regions of the wake contain up to a 12% difference in normalized axial velocity, due to the introduction of wind fluctuations. The findings of this study prove valuable for practical applications in wind farm control and optimization strategies, with particular significance for modern utility-scale wind power plants operating in variant atmospheric conditions.

Suggested Citation

  • Alayna Farrell & Fernando Ponta & Apurva Baruah, 2024. "Analyzing the Effects of Atmospheric Turbulent Fluctuations on the Wake Structure of Wind Turbines and Their Blade Vibrational Dynamics," Energies, MDPI, vol. 17(9), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2058-:d:1383436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ponta, Fernando L. & Jacovkis, Pablo M., 2001. "A vortex model for Darrieus turbine using finite element techniques," Renewable Energy, Elsevier, vol. 24(1), pages 1-18.
    2. Ponta, Fernando L. & Otero, Alejandro D. & Lago, Lucas I. & Rajan, Anurag, 2016. "Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)," Renewable Energy, Elsevier, vol. 92(C), pages 157-170.
    3. Kong, C. & Bang, J. & Sugiyama, Y., 2005. "Structural investigation of composite wind turbine blade considering various load cases and fatigue life," Energy, Elsevier, vol. 30(11), pages 2101-2114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alayna Farrell & Fernando Ponta & North Yates, 2025. "Modeling and Analysis of Wind Turbine Wake Vortex Evolution Due to Time-Constant Spatial Variations in Atmospheric Flow," Energies, MDPI, vol. 18(6), pages 1-28, March.
    2. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    3. Xiao Chen & Wei Zhao & Xiao Lu Zhao & Jian Zhong Xu, 2014. "Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading," Energies, MDPI, vol. 7(4), pages 1-24, April.
    4. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
    5. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    6. Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
    7. Yang, Jinshui & Peng, Chaoyi & Xiao, Jiayu & Zeng, Jingcheng & Yuan, Yun, 2012. "Application of videometric technique to deformation measurement for large-scale composite wind turbine blade," Applied Energy, Elsevier, vol. 98(C), pages 292-300.
    8. Philipp R Thies & Lars Johanning & Kwaku Ampea Karikari-Boateng & Chong Ng & Paul McKeever, 2015. "Component reliability test approaches for marine renewable energy," Journal of Risk and Reliability, , vol. 229(5), pages 403-416, October.
    9. Senthil Kumar Madasamy & Vijayanandh Raja & Hussein A Z AL-bonsrulah & Mohammed Al-Bahrani, 2022. "Design, development and multi-disciplinary investigations of aerodynamic, structural, energy and exergy factors on 1 kW horizontal-axis wind turbine [Composite materials for wind power turbine blad," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1292-1318.
    10. Habibi, Hossein & Cheng, Liang & Zheng, Haitao & Kappatos, Vassilios & Selcuk, Cem & Gan, Tat-Hean, 2015. "A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations," Renewable Energy, Elsevier, vol. 83(C), pages 859-870.
    11. Apurva Baruah & Fernando Ponta & Alayna Farrell, 2024. "Simulation of the Multi-Wake Evolution of Two Sandia National Labs/National Rotor Testbed Turbines Operating in a Tandem Layout," Energies, MDPI, vol. 17(5), pages 1-25, February.
    12. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    13. Jie Zhu & Xin Cai & Pan Pan & Rongrong Gu, 2014. "Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method," Energies, MDPI, vol. 7(2), pages 1-15, February.
    14. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
    15. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    16. Jiang, Wenchun & Fan, Qinshan & Gong, Jianming, 2010. "Optimization of welding joint between tower and bottom flange based on residual stress considerations in a wind turbine," Energy, Elsevier, vol. 35(1), pages 461-467.
    17. Liao, C.C. & Zhao, X.L. & Xu, J.Z., 2012. "Blade layers optimization of wind turbines using FAST and improved PSO Algorithm," Renewable Energy, Elsevier, vol. 42(C), pages 227-233.
    18. Jinghua Lin & You-lin Xu & Yong Xia, 2019. "Structural Analysis of Large-Scale Vertical Axis Wind Turbines Part II: Fatigue and Ultimate Strength Analyses," Energies, MDPI, vol. 12(13), pages 1-18, July.
    19. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    20. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2058-:d:1383436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.