Effects of rotor deformation in wind-turbine performance: The Dynamic Rotor Deformation Blade Element Momentum model (DRD–BEM)
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.01.098
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ponta, Fernando L. & Jacovkis, Pablo M., 2001. "A vortex model for Darrieus turbine using finite element techniques," Renewable Energy, Elsevier, vol. 24(1), pages 1-18.
- Lago, Lucas I. & Ponta, Fernando L. & Otero, Alejandro D., 2013. "Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade," Renewable Energy, Elsevier, vol. 59(C), pages 13-22.
- Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
- Yu, Dong Ok & Kwon, Oh Joon, 2014. "Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method," Renewable Energy, Elsevier, vol. 70(C), pages 184-196.
- Lanzafame, R. & Messina, M., 2012. "BEM theory: How to take into account the radial flow inside of a 1-D numerical code," Renewable Energy, Elsevier, vol. 39(1), pages 440-446.
- Vaz, Jerson Rogério Pinheiro & Pinho, João Tavares & Mesquita, André Luiz Amarante, 2011. "An extension of BEM method applied to horizontal-axis wind turbine design," Renewable Energy, Elsevier, vol. 36(6), pages 1734-1740.
- Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
- Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz & Tumidajski, Jakub, 2023. "Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach," Renewable Energy, Elsevier, vol. 216(C).
- Liu, Zhenqing & Wang, Yize & Nyangi, Patrice & Zhu, Zhiwen & Hua, Xugang, 2021. "Proposal of a novel GPU-accelerated lifetime optimization method for onshore wind turbine dampers under real wind distribution," Renewable Energy, Elsevier, vol. 168(C), pages 516-543.
- Cognet, V. & Courrech du Pont, S. & Thiria, B., 2020. "Material optimization of flexible blades for wind turbines," Renewable Energy, Elsevier, vol. 160(C), pages 1373-1384.
- Alayna Farrell & Fernando Ponta & Apurva Baruah, 2024. "Analyzing the Effects of Atmospheric Turbulent Fluctuations on the Wake Structure of Wind Turbines and Their Blade Vibrational Dynamics," Energies, MDPI, vol. 17(9), pages 1-29, April.
- Anurag Rajan & Fernando L. Ponta, 2019. "A Novel Correlation Model for Horizontal Axis Wind Turbines Operating at High-Interference Flow Regimes," Energies, MDPI, vol. 12(6), pages 1-20, March.
- Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
- Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
- Pan He & Jian Xia, 2022. "Study on the Influence of Low-Level Jet on the Aerodynamic Characteristics of Horizontal Axis Wind Turbine Rotor Based on the Aerodynamics–Controller Interaction Method," Energies, MDPI, vol. 15(8), pages 1-18, April.
- Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
- Kyoungboo Yang, 2020. "Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization," Energies, MDPI, vol. 13(9), pages 1-18, May.
- Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
- Anurag Rajan & Fernando L. Ponta, 2019. "A Novel Correlation Model for Horizontal Axis Wind Turbines Operating at High-Interference Flow Regimes," Energies, MDPI, vol. 12(6), pages 1-20, March.
- Lanzafame, R. & Messina, M., 2013. "Advanced brake state model and aerodynamic post-stall model for horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 415-420.
- Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
- Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
- Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
- Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
- Tavares Dias do Rio Vaz, Déborah Aline & Vaz, Jerson Rogério Pinheiro & Mesquita, André Luiz Amarante & Pinho, João Tavares & Pinho Brasil Junior, Antonio Cesar, 2013. "Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake," Renewable Energy, Elsevier, vol. 55(C), pages 296-304.
- Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2020. "Similarity functions and a new k−ε closure for predicting stratified atmospheric surface layer flows in complex terrain," Renewable Energy, Elsevier, vol. 150(C), pages 907-917.
- Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
- Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
- Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2016. "Evaluation of equivalent structural properties of NREL phase VI wind turbine blade," Renewable Energy, Elsevier, vol. 86(C), pages 796-818.
- Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
- Xu, Jian & Wang, Longyan & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Yuan, Jianping & Tan, Andy C.C., 2024. "Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades," Energy, Elsevier, vol. 296(C).
- Peng, Chao & Zou, Jianxiao & Li, Yan & Xu, Hongbing & Li, Liying, 2017. "A novel composite calculation model for power coefficient and flapping moment coefficient of wind turbine," Energy, Elsevier, vol. 126(C), pages 821-829.
More about this item
Keywords
Wind turbine; Innovative interference model; Blade aeroelastic modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:92:y:2016:i:c:p:157-170. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.