IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1275-d1352764.html
   My bibliography  Save this article

State of Charge Estimation of Flooded Lead Acid Battery Using Adaptive Unscented Kalman Filter

Author

Listed:
  • Abdul Basit Khan

    (Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea)

  • Abdul Shakoor Akram

    (Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea)

  • Woojin Choi

    (Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea)

Abstract

Flooded Lead Acid (FLA) batteries remain a cost-effective choice in various industries. Accurate State of Charge (SOC) estimation is crucial for effective battery management systems. This paper thoroughly examines the behavior of Open-Circuit Voltage (OCV) during hysteresis in FLA batteries, proposing a novel hysteresis modeling approach based on this behavior to enhance the SOC estimation accuracy. Additionally, we introduce an Adaptive Unscented Kalman Filter (AUKF) to further refine the SOC estimation precision. Experimental validation confirms the effectiveness of the proposed hysteresis modeling. A comparative analysis against the traditional Unscented Kalman Filter (UKF) under random charge/discharge profiles underscores the superior performance of AUKF, showcasing an improved convergence to the correct SOC value and a significant reduction in the SOC estimation error to approximately 2%, in contrast to the 5% error observed with the traditional UKF.

Suggested Citation

  • Abdul Basit Khan & Abdul Shakoor Akram & Woojin Choi, 2024. "State of Charge Estimation of Flooded Lead Acid Battery Using Adaptive Unscented Kalman Filter," Energies, MDPI, vol. 17(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1275-:d:1352764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Sheraz & Woojin Choi, 2023. "A Novel Technique for Fast Ohmic Resistance Measurement to Evaluate the Aging of Lithium-Ion xEVs Batteries," Energies, MDPI, vol. 16(3), pages 1-15, February.
    2. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    3. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    4. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    2. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    3. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    4. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    5. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    6. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    7. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    9. Zizhou Lao & Bizhong Xia & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares," Energies, MDPI, vol. 11(6), pages 1-15, May.
    10. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    11. Bizhong Xia & Haiqing Wang & Mingwang Wang & Wei Sun & Zhihui Xu & Yongzhi Lai, 2015. "A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter," Energies, MDPI, vol. 8(12), pages 1-15, November.
    12. Bizhong Xia & Shengkun Guo & Wei Wang & Yongzhi Lai & Huawen Wang & Mingwang Wang & Weiwei Zheng, 2018. "A State of Charge Estimation Method Based on Adaptive Extended Kalman-Particle Filtering for Lithium-ion Batteries," Energies, MDPI, vol. 11(10), pages 1-15, October.
    13. Xiong, Rui & Li, Zhengyang & Li, Hailong & Wang, Jun & Liu, Guofang, 2025. "A novel method for state of charge estimation of lithium-ion batteries at low-temperatures," Applied Energy, Elsevier, vol. 377(PB).
    14. Zhibing Zeng & Jindong Tian & Dong Li & Yong Tian, 2018. "An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-16, January.
    15. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    16. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    17. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    18. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    19. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    20. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1275-:d:1352764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.