IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1129-d1346874.html
   My bibliography  Save this article

Supercritical CO 2 Power Technology: Strengths but Challenges

Author

Listed:
  • Michel Molière

    (Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54000 Nancy, France
    Institut Carnot de Bourgogne-Université de Technologie de Belfort Montbéliard (ICB-UTBM), 90000 Belfort, France)

  • Romain Privat

    (Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54000 Nancy, France)

  • Jean-Noël Jaubert

    (Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54000 Nancy, France)

  • Frédéric Geiger

    (Département Sciences et Énergies, UFR-STGI, Université de Franche-Comté, 90000 Belfort, France)

Abstract

In the late 1960s, a handful of inspired researchers predicted the great potential of supercritical CO 2 (“sCO 2 ”) cycles for the production of electricity and highlighted the prospects for dramatic reductions in component sizes and efficiency increases. Since then, considerable development programs have been deployed around the world to “tame” this new technology. Despite these efforts, in-depth engineering studies and extensive testing are still necessary today before viable designs can be released for large-scale industrial applications. This raises questions as to the reasons for this delay, this debate being rarely addressed in the current literature. This situation has motivated the present study. Trying to unravel such an intricate topic requires to understand the distinctive properties of supercritical CO 2 and the particular requirements of closed, high-pressure power systems. This article aims then to provide a broad overview of sCO 2 power cycles, highlighting their main advantages and limitations and reflecting the challenges associated with the industrialization of that technology which actually requires disruptive and innovative designs.

Suggested Citation

  • Michel Molière & Romain Privat & Jean-Noël Jaubert & Frédéric Geiger, 2024. "Supercritical CO 2 Power Technology: Strengths but Challenges," Energies, MDPI, vol. 17(5), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1129-:d:1346874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
    2. Qiao Zhao & Mounir Mecheri & Thibaut Neveux & Romain Privat & Jean-Noël Jaubert & Yann Le Moullec, 2023. "Search for the Optimal Design of a Supercritical-CO 2 Brayton Power Cycle from a Superstructure-Based Approach Implemented in a Commercial Simulation Software," Energies, MDPI, vol. 16(14), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    2. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    3. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    4. Manzolini, Giampaolo & Lucca, Gaia & Binotti, Marco & Lozza, Giovanni, 2021. "A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants," Renewable Energy, Elsevier, vol. 177(C), pages 807-822.
    5. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    6. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    7. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    8. Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
    9. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    10. Chen, Jing & Li, Fan & Li, Haoran & Sun, Bo & Zhang, Chenghui & Liu, Shuai, 2023. "Novel dynamic equivalent circuit model of integrated energy systems," Energy, Elsevier, vol. 262(PA).
    11. Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
    12. Chen, Yuxuan & Zhang, Yanping & Wang, Ding & Hu, Song & Huang, Xiaohong, 2021. "Effects of design parameters on fatigue–creep damage of tubular supercritical carbon dioxide power tower receivers," Renewable Energy, Elsevier, vol. 176(C), pages 520-532.
    13. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    14. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
    15. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2021. "Load matching and techno-economic analysis of CSP plant with S–CO2 Brayton cycle in CSP-PV-wind hybrid system," Energy, Elsevier, vol. 223(C).
    16. Chen, Kang & Zheng, Shaoxiong & Du, Yang & Fan, Gang & Dai, Yiping & Chen, Haichao, 2021. "Thermodynamic and economic comparison of novel parallel and serial combined cooling and power systems based on sCO2 cycle," Energy, Elsevier, vol. 215(PA).
    17. Son, In Woo & Jeong, Yongju & Son, Seongmin & Park, Jung Hwan & Lee, Jeong Ik, 2022. "Techno-economic evaluation of solar-nuclear hybrid system for isolated grid," Applied Energy, Elsevier, vol. 306(PA).
    18. Zhang, Yifan & Li, Hongzhi & Han, Wanlong & Bai, Wengang & Yang, Yu & Yao, Mingyu & Wang, Yueming, 2018. "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, Elsevier, vol. 155(C), pages 1-14.
    19. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    20. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1129-:d:1346874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.