IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000454.html
   My bibliography  Save this article

Comparing the partial cooling and recompression cycles for a 50 MWe sCO2 CSP plant using detailed recuperator models

Author

Listed:
  • du Sart, Colin Francois
  • Rousseau, Pieter
  • Laubscher, Ryno

Abstract

Supercritical carbon dioxide (sCO2) power cycles are attractive for renewable energy technologies as they exhibit high thermal efficiencies, compact components, and reduced cycle complexity and levelized cost of energy (LCOE) relative to traditional steam power cycles. Consequently, numerous studies have investigated different layouts and operating parameters in search of an optimal cycle configuration. Two cycle layouts provide promising results, namely the partial cooling with reheating (PCRH) cycle, and the recompression with intercooling and reheating (RCICRH) cycle. Both cycles utilise recuperators with high heat transfer rates and literature suggests that the cost for the recuperators may account for a significant portion of the total plant capital expenditure. When modelling the recuperator, most cycle comparative studies employ simplified recuperator models where heat exchanger effectiveness or conductance is utilised to approximate heat transfer. These models do not consider the effect of recuperator size and geometry on heat transfer and pressure drop in detail. In this work, for a concentrated solar power (CSP) application, the performance and component size requirements of the cycles are evaluated parametrically for different cycle mass flow split ratios, pressure ratios, and ratio of pressure ratios across the compressors using detailed discretised one-dimensional (1D) recuperator models. Furthermore, the geometry of these models are optimised (by volume) for straight and zigzag channel printed circuit heat exchangers (PCHEs), widely accepted as the most suitable for this application. Finally, a high-level cost comparison is conducted. The results show that if appropriate pressure drop assumptions are made, a simplified model approach yields valid cycle level results when compared with the results obtained using detailed models which consider practical recuperator geometry. However, the pressures and temperatures within the recuperator may not be predicted to a sufficient level of accuracy. In addition to providing clarity regarding the interplay between key cycle process parameters and cycle performance, straight channel PCHEs provide better thermofluid performance than zigzag channel PCHEs. Furthermore, the RCICRH cycle requires larger turbomachinery and a marginally higher capital outlay for the power cycle, but offers superior thermal efficiencies and requires smaller heat exchangers. For sCO2-CSP applications employing dry cooling, this suggests that the RCICRH cycle requires a smaller solar field and cooling system, and may therefore offer increased revenue in adverse weather conditions where direct normal irradiance (DNI) is low and/or ambient temperatures are high. However, the PCRH cycle requires a smaller solar receiver system, a smaller thermal energy storage (TES) system, and smaller turbomachinery, the cost savings of which may outweigh the benefits of the RCICRH cycle.

Suggested Citation

  • du Sart, Colin Francois & Rousseau, Pieter & Laubscher, Ryno, 2024. "Comparing the partial cooling and recompression cycles for a 50 MWe sCO2 CSP plant using detailed recuperator models," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000454
    DOI: 10.1016/j.renene.2024.119980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.