IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p508-d1322941.html
   My bibliography  Save this article

A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions

Author

Listed:
  • José Agustín Aguilar

    (Institut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, Spain)

  • Damien Chanal

    (Institut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, France)

  • Didier Chamagne

    (Institut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, France)

  • Nadia Yousfi Steiner

    (Institut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, France)

  • Marie-Cécile Péra

    (Institut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, France)

  • Attila Husar

    (Institut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, Spain
    Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya, Pavelló 1, Diagonal 647, 08028 Barcelona, Spain)

  • Juan Andrade-Cetto

    (Institut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, Spain)

Abstract

The goal of increasing efficiency and durability of fuel cells can be achieved through optimal control of their operating conditions. In order to implement such controllers, accurate and computationally efficient fuel cell models must be developed. This work presents a hybrid (physics-based and data-driven), control-oriented model for approximating the output voltage of proton exchange membrane fuel cells (PEMFCs) while operating under dynamical conditions. First, a physics-based model, built from simplified electrochemical, membrane dynamics and mass conservation equations, is developed and validated through experimental data. Second, a data-driven, neural network (echo state network) is trained, fitted and tested with the same dataset. Then, the hybrid model is formed as a parallel structure, where the simplified physics-based model and the trained data-driven model are merged through an algorithm based on Gaussian radial basis functions. The merging algorithm compares the output of both single models and assigns weights for computing the prediction of the hybrid result. The proposed hybrid model structure is successfully trained, validated and tested with an experimental dataset originating from fuel cells within an automotive PEMFC stack. The hybrid model is assessed through the mean square error index, with the result of a low tracking error.

Suggested Citation

  • José Agustín Aguilar & Damien Chanal & Didier Chamagne & Nadia Yousfi Steiner & Marie-Cécile Péra & Attila Husar & Juan Andrade-Cetto, 2024. "A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions," Energies, MDPI, vol. 17(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:508-:d:1322941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zong, Yi & Zhou, Keliang & Fu, Zhichao, 2020. "Control oriented data driven linear parameter varying model for proton exchange membrane fuel cell systems," Applied Energy, Elsevier, vol. 277(C).
    2. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    2. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    3. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    4. Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    5. K. Arunprasath & S. Bathrinath & R. K. A. Bhalaji & Koppiahraj Karuppiah & Anish Nair, 2023. "An integrated approach to modelling of barriers in implementation of cellular manufacturing systems in production industries," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1370-1378, August.
    6. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    7. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    9. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    10. Jannesar Niri, Anahita & Poelzer, Gregory A. & Zhang, Steven E. & Rosenkranz, Jan & Pettersson, Maria & Ghorbani, Yousef, 2024. "Sustainability challenges throughout the electric vehicle battery value chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    11. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    12. Wang, Mingli & Ruan, Jiafen & Zhang, Jian & Jiang, Yefan & Gao, Fei & Zhang, Xin & Rahman, Ehsanur & Guo, Juncheng, 2024. "Modeling, thermodynamic performance analysis, and parameter optimization of a hybrid power generation system coupling thermogalvanic cells with alkaline fuel cells," Energy, Elsevier, vol. 292(C).
    13. Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).
    14. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    15. Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    16. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    17. Ke Song & Yimin Wang & Cancan An & Hongjie Xu & Yuhang Ding, 2021. "Design and Validation of Energy Management Strategy for Extended-Range Fuel Cell Electric Vehicle Using Bond Graph Method," Energies, MDPI, vol. 14(2), pages 1-31, January.
    18. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    19. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    20. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:508-:d:1322941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.