IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p469-d1321433.html
   My bibliography  Save this article

Optimal Control of Cascade Hydro Plants as a Prosumer-Oriented Distributed Energy Depot

Author

Listed:
  • Przemysław Ignaciuk

    (Institute of Information Technology, Lodz University of Technology, Politechniki 8 St., 93-590 Łódź, Poland)

  • Michał Morawski

    (Institute of Information Technology, Lodz University of Technology, Politechniki 8 St., 93-590 Łódź, Poland)

Abstract

For political and economic reasons, renewable sources of energy have gained much importance in establishing a sustainable energy economy. By their very nature, however, their benefits depend on changeable weather conditions, and are unrelated to the generation and consumption patterns in industrial or home environments. This generation–dissipation disparity induces price fluctuations and threatens the stability of the supply system, yet can be alleviated by installing energy depots. While the classic methods of energy storage are hardly cost-effective, they may be supplemented, or replaced, by a distributed system of small-scale hydropower plants with ponds used as energy reservoirs. In this paper, following a rigorous mathematical argument, a dynamic model of a multi-cascade of hydropower plants is constructed, and a cost-optimal controller, with formally proven properties, is designed. On the one hand, it allows for an increase in the owners’ revenue by as much as 30% (compared to a free-flow state); on the other hand, it reduces the load fluctuation imposed on the grid and the legacy supply system. Moreover, the risk of floods and droughts downstream resulting from inappropriate use of the plants is averted.

Suggested Citation

  • Przemysław Ignaciuk & Michał Morawski, 2024. "Optimal Control of Cascade Hydro Plants as a Prosumer-Oriented Distributed Energy Depot," Energies, MDPI, vol. 17(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:469-:d:1321433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    3. Geoffrey Gasore & Arthur Santos & Etienne Ntagwirumugara & Daniel Zimmerle, 2023. "Sizing of Small Hydropower Plants for Highly Variable Flows in Tropical Run-of-River Installations: A Case Study of the Sebeya River," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    5. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    6. Seme, Sebastijan & Sredenšek, Klemen & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2018. "Optimal price of electricity of solar power plants and small hydro power plants – Technical and economical part of investments," Energy, Elsevier, vol. 157(C), pages 87-95.
    7. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    8. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2022. "Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology," Renewable Energy, Elsevier, vol. 187(C), pages 508-521.
    9. Arabatzis, Garyfallos & Kyriakopoulos, Grigorios & Tsialis, Panagiotis, 2017. "Typology of regional units based on RES plants: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1424-1434.
    10. Marcin Rabe & Dalia Streimikiene & Wojciech Drożdż & Yuriy Bilan & Rafal Kasperowicz, 2020. "Sustainable regional energy planning: The case of hydro," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1652-1662, November.
    11. Hussain, Abid & Sarangi, Gopal K. & Pandit, Anju & Ishaq, Sultan & Mamnun, Nabir & Ahmad, Bashir & Jamil, Muhammad Khalid, 2019. "Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 446-461.
    12. Claudia Condemi & Loretta Mastroeni & Pierluigi Vellucci, 2021. "The impact of Clean Spark Spread expectations on storage hydropower generation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1111-1146, December.
    13. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    14. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    15. Leonardo Peña-Pupo & Herminio Martínez-García & Encarna García-Vílchez & Ernesto Y. Fariñas-Wong & José R. Núñez-Álvarez, 2021. "Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids," Energies, MDPI, vol. 14(23), pages 1-17, December.
    16. Mohsen Ramezanzade & Hossein Karimi & Khalid Almutairi & Hoa Ao Xuan & Javad Saebi & Ali Mostafaeipour & Kuaanan Techato, 2021. "Implementing MCDM Techniques for Ranking Renewable Energy Projects under Fuzzy Environment: A Case Study," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    17. Epari Ritesh Patro & Teegala Srinivasa Kishore & Ali Torabi Haghighi, 2022. "Levelized Cost of Electricity Generation by Small Hydropower Projects under Clean Development Mechanism in India," Energies, MDPI, vol. 15(4), pages 1-16, February.
    18. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    19. Fichtner, Stephan & Meyr, Herbert, 2019. "Biogas plant optimization by increasing its exibility considering uncertain revenues," Hohenheim Discussion Papers in Business, Economics and Social Sciences 07-2019, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    20. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:469-:d:1321433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.