Transfer Learning for the Prediction of Energy Performance of Water-Cooled Electric Chillers: Grey-Box Models Versus Deep Neural Network (DNN) Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hongwen Dou & Radu Zmeureanu, 2023. "Transfer Learning Prediction Performance of Chillers for Neural Network Models," Energies, MDPI, vol. 16(20), pages 1-16, October.
- Sarran, Lucile & Smith, Kevin M. & Hviid, Christian A. & Rode, Carsten, 2022. "Grey-box modelling and virtual sensors enabling continuous commissioning of hydronic floor heating," Energy, Elsevier, vol. 261(PB).
- Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
- Qian, Fanyue & Gao, Weijun & Yang, Yongwen & Yu, Dan, 2020. "Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption," Energy, Elsevier, vol. 193(C).
- Liu, Jiaquan & Hou, Lei & Zhang, Rui & Sun, Xingshen & Yu, Qiaoyan & Yang, Kai & Zhang, Xinru, 2023. "Explainable fault diagnosis of oil-gas treatment station based on transfer learning," Energy, Elsevier, vol. 262(PA).
- Yuan, Yue & Chen, Zhihua & Wang, Zhe & Sun, Yifu & Chen, Yixing, 2023. "Attention mechanism-based transfer learning model for day-ahead energy demand forecasting of shopping mall buildings," Energy, Elsevier, vol. 270(C).
- Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
- Li, Guannan & Zhan, Lei & Fang, Xi & Gao, Jiajia & Xu, Chengliang & He, Xin & Deng, Jiahui & Xiong, Chenglong, 2024. "Performance comparison on improved data-driven building energy prediction under data shortage scenarios in four perspectives: Data generation, incremental learning, transfer learning, and physics-info," Energy, Elsevier, vol. 312(C).
- Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
- Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
- Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
- Yuhong Zhao & Ruirui Liu & Zhansheng Liu & Liang Liu & Jingjing Wang & Wenxiang Liu, 2023. "A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
- Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
- Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
- Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
- Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
- Jiaxi Hu & Chengxi Lyu & Yinzhen Hou & Neng Zhu & Kairui Liu, 2024. "Research on Summer Indoor Air Conditioning Design Parameters in Haikou City: A Field Study of Indoor Thermal Perception and Comfort," Sustainability, MDPI, vol. 16(9), pages 1-17, May.
- Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
- Hu, Chenxi & Zhang, Jun & Yuan, Hongxia & Gao, Tianlu & Jiang, Huaiguang & Yan, Jing & Wenzhong Gao, David & Wang, Fei-Yue, 2022. "Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19," Applied Energy, Elsevier, vol. 309(C).
- Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
- Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
- Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
- Zhang, Limao & Guo, Jing & Lin, Penghui & Tiong, Robert L.K., 2025. "Detecting energy consumption anomalies with dynamic adaptive encoder-decoder deep learning networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
- Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
More about this item
Keywords
chiller; performance; transfer learning; measurements; grey-box; neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5981-:d:1531540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.