IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3864-d1388750.html
   My bibliography  Save this article

Research on Summer Indoor Air Conditioning Design Parameters in Haikou City: A Field Study of Indoor Thermal Perception and Comfort

Author

Listed:
  • Jiaxi Hu

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Chengxi Lyu

    (China Academy of Building Research, Beijing 100013, China)

  • Yinzhen Hou

    (School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Neng Zhu

    (School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Kairui Liu

    (School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China)

Abstract

Escalating global climate change and the intensification of urban heatwaves have led to an increase in summer air conditioning cooling energy consumption. This phenomenon is particularly critical in tropical regions, as it may trigger an energy crisis. The rational setting of indoor thermal design parameters can help conserve energy to the maximum extent while ensuring thermal comfort for occupants. This study selected Haikou City, a unique tropical city in China, as the research location. Indoor environment measurements and a questionnaire survey were conducted with participants, and the outdoor thermal environment sensitivity, population attributes and differences in thermal sensation, thermal neutral temperature, and comfort range were calculated and analyzed. The following results were obtained. Based on the overall population, long-term residence, and temporary residence classification, the indoor thermal comfort needs of residents in tropical cities in Haikou were effectively identified. The actual thermal neutral temperature of the overall population is 25.7 °C, and 90% of the acceptable thermal comfort temperature range is 23.2 °C–28.0 °C. The actual thermal neutral temperature of the regular residents is 27.3 °C, and 90% of the acceptable thermal comfort temperature range is 23.3 °C–31.4 °C. The actual thermal neutral temperature of the temporary population is 25.5 °C, and 90% of the acceptable thermal comfort temperature range is 23.0 °C–28.0 °C. These research results have an important reference value for improving the setting of the temperature of air conditioning in tropical areas in summer and further reducing energy consumption, which is conducive to sustainable development.

Suggested Citation

  • Jiaxi Hu & Chengxi Lyu & Yinzhen Hou & Neng Zhu & Kairui Liu, 2024. "Research on Summer Indoor Air Conditioning Design Parameters in Haikou City: A Field Study of Indoor Thermal Perception and Comfort," Sustainability, MDPI, vol. 16(9), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3864-:d:1388750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    2. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    3. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    2. Cui, Can & Wang, Zhen & Cai, Bofeng & Peng, Sha & Wang, Yang & Xu, Chengdong, 2021. "Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025," Applied Energy, Elsevier, vol. 281(C).
    3. Yuanfan Zheng & Liang Chen & Haipeng Zhao, 2024. "Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    4. Francisco Estrada & Veronica Lupi & W. J. Wouter Botzen & Richard S. J. Tol, 2025. "Urban and non-urban contributions to the social cost of carbon," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    6. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    7. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    8. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    9. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    10. Liao, Rundong & Manfren, Massimiliano & Nastasi, Benedetto, 2025. "Off-grid PV systems modelling and optimisation for rural communities - leveraging understandability and interpretability of modelling tools," Energy, Elsevier, vol. 324(C).
    11. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    12. Chris Boulton & Claudia Baldwin & Tony Matthews & Silvia Tavares, 2023. "Environmental Design for Urban Cooling, Access, and Safety: A Novel Approach to Auditing Outdoor Areas in Residential Aged Care Facilities," Land, MDPI, vol. 12(2), pages 1-22, February.
    13. Fitsum Tariku & Afshin Gharib Mombeni, 2023. "ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration," Energies, MDPI, vol. 16(14), pages 1-23, July.
    14. Yuanyuan Li & Lina Zhao & Hao Zheng & Xiaozhou Yang, 2025. "Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design," Land, MDPI, vol. 14(7), pages 1-32, July.
    15. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    16. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    17. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    18. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    19. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    20. Ying Wang & Yin Ren & Xiaoman Zheng & Zhifeng Wu, 2024. "The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index," Sustainability, MDPI, vol. 17(1), pages 1-21, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3864-:d:1388750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.