IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5689-d1520609.html
   My bibliography  Save this article

Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model

Author

Listed:
  • Ziquan Zhao

    (School of Electrical and Information Engineering, Beihua University, Jilin 132013, China)

  • Jing Bai

    (School of Electrical and Information Engineering, Beihua University, Jilin 132013, China)

Abstract

To address the challenges of the strong randomness and intermittency of wind power generation that affect wind power grid integration, power system scheduling, and the safe and stable operation of the system, an improved Dung Beetle Optimization Algorithm (MSADBO) is proposed to optimize the hyperparameters of the Long Short-Term Memory neural network (LSTM) for ultra-short-term wind power forecasting. By applying Bernoulli mapping for population initialization, the model’s sensitivity to wind power fluctuations is reduced, which accelerates the algorithm’s convergence speed. Incorporating an improved Sine Algorithm (MSA) into the forecasting model for this nonlinear problem significantly improves the position update strategy of the Dung Beetle Optimization Algorithm (DBO), which tends to be overly random and prone to local optima. This enhancement boosts the algorithm’s exploration capabilities both locally and globally, improving the rapid responsiveness of ultra-short-term wind power forecasting. Furthermore, an adaptive Gaussian–Cauchy mixture perturbation is introduced to interfere with individuals, increasing population diversity, escaping local optima, and enabling the continued exploration of other areas of the solution space until the global optimum is ultimately found. By optimizing three hyperparameters of the LSTM using the MSADBO algorithm, the prediction accuracy of the model is greatly enhanced. After simulation validation, taking winter as an example, the MSADBO-LSTM predictive model achieved a reduction in the MAE metric of 40.6% compared to LSTM, 20.12% compared to PSO-LSTM, and 3.82% compared to DBO-LSTM. The MSE decreased by 45.4% compared to LSTM, 40.78% compared to PSO-LSTM, and 16.62% compared to DBO-LSTM. The RMSE was reduced by 26.11% compared to LSTM, 23.05% compared to PSO-LSTM, and 8.69% compared to DBO-LSTM. Finally, the MAPE declined by 79.83% compared to LSTM, 31.88% compared to PSO-LSTM, and 29.62% compared to DBO-LSTM. This indicates that the predictive model can effectively enhance the accuracy of wind power forecasting.

Suggested Citation

  • Ziquan Zhao & Jing Bai, 2024. "Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model," Energies, MDPI, vol. 17(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5689-:d:1520609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akram Belazi & Héctor Migallón & Daniel Gónzalez-Sánchez & Jorge Gónzalez-García & Antonio Jimeno-Morenilla & José-Luis Sánchez-Romero, 2022. "Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization," Mathematics, MDPI, vol. 10(7), pages 1-47, April.
    2. Kamil Szostek & Damian Mazur & Grzegorz Drałus & Jacek Kusznier, 2024. "Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production," Energies, MDPI, vol. 17(19), pages 1-18, September.
    3. Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
    4. Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Chen & Miaolin Yu & Haochong Wei & Huanxing Qi & Yiming Qin & Xiaochun Hu & Rongxing Jiang, 2025. "A Lightweight Framework for Rapid Response to Short-Term Forecasting of Wind Farms Using Dual Scale Modeling and Normalized Feature Learning," Energies, MDPI, vol. 18(3), pages 1-20, January.
    2. Na Fang & Zhengguang Liu & Shilei Fan, 2025. "Short-Term Wind Power Prediction Method Based on CEEMDAN-VMD-GRU Hybrid Model," Energies, MDPI, vol. 18(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    2. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    3. Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2023. "A Hybrid Model of Variational Mode Decomposition and Long Short-Term Memory for Next-Hour Wind Speed Forecasting in a Hot Desert Climate," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
    4. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    5. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    6. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    9. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    10. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    11. Yongkang Liu & Yi Gu & Yuwei Long & Qinyu Zhang & Yonggang Zhang & Xu Zhou, 2025. "Research on Physically Constrained VMD-CNN-BiLSTM Wind Power Prediction," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
    12. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    13. Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.
    14. Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
    15. Shi, Jian & Teh, Jiashen & Lai, Ching-Ming, 2025. "Wind power prediction based on improved self-attention mechanism combined with Bi-directional Temporal Convolutional Network," Energy, Elsevier, vol. 322(C).
    16. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    17. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    18. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    19. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    20. Huang, Hao-Hsuan & Huang, Yun-Hsun, 2024. "Applying green learning to regional wind power prediction and fluctuation risk assessment," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5689-:d:1520609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.