Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Akram Belazi & Héctor Migallón & Daniel Gónzalez-Sánchez & Jorge Gónzalez-García & Antonio Jimeno-Morenilla & José-Luis Sánchez-Romero, 2022. "Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization," Mathematics, MDPI, vol. 10(7), pages 1-47, April.
- Kamil Szostek & Damian Mazur & Grzegorz Drałus & Jacek Kusznier, 2024. "Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production," Energies, MDPI, vol. 17(19), pages 1-18, September.
- Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
- Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yan Chen & Miaolin Yu & Haochong Wei & Huanxing Qi & Yiming Qin & Xiaochun Hu & Rongxing Jiang, 2025. "A Lightweight Framework for Rapid Response to Short-Term Forecasting of Wind Farms Using Dual Scale Modeling and Normalized Feature Learning," Energies, MDPI, vol. 18(3), pages 1-20, January.
- Na Fang & Zhengguang Liu & Shilei Fan, 2025. "Short-Term Wind Power Prediction Method Based on CEEMDAN-VMD-GRU Hybrid Model," Energies, MDPI, vol. 18(6), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2023. "A Hybrid Model of Variational Mode Decomposition and Long Short-Term Memory for Next-Hour Wind Speed Forecasting in a Hot Desert Climate," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
- Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
- Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
- Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
- Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
- Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
- Yongkang Liu & Yi Gu & Yuwei Long & Qinyu Zhang & Yonggang Zhang & Xu Zhou, 2025. "Research on Physically Constrained VMD-CNN-BiLSTM Wind Power Prediction," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
- Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
- Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.
- Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
- Shi, Jian & Teh, Jiashen & Lai, Ching-Ming, 2025. "Wind power prediction based on improved self-attention mechanism combined with Bi-directional Temporal Convolutional Network," Energy, Elsevier, vol. 322(C).
- Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
- Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
- Huang, Hao-Hsuan & Huang, Yun-Hsun, 2024. "Applying green learning to regional wind power prediction and fluctuation risk assessment," Energy, Elsevier, vol. 295(C).
More about this item
Keywords
ultra-short-term wind power forecasting; long short-term memory neural network; improved dung beetle optimization algorithm; sine algorithm; adaptive Gaussian–Cauchy mixture perturbation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5689-:d:1520609. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.